You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1164 lines
27 KiB

6 months ago
import {
BufferAttribute,
BufferGeometry,
Color,
FileLoader,
Float32BufferAttribute,
Loader
} from 'three';
import * as fflate from '../libs/fflate.module.js';
class VTKLoader extends Loader {
constructor( manager ) {
super( manager );
}
load( url, onLoad, onProgress, onError ) {
const scope = this;
const loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.setRequestHeader( scope.requestHeader );
loader.setWithCredentials( scope.withCredentials );
loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
parse( data ) {
function parseASCII( data ) {
// connectivity of the triangles
const indices = [];
// triangles vertices
const positions = [];
// red, green, blue colors in the range 0 to 1
const colors = [];
// normal vector, one per vertex
const normals = [];
let result;
// pattern for detecting the end of a number sequence
const patWord = /^[^\d.\s-]+/;
// pattern for reading vertices, 3 floats or integers
const pat3Floats = /(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)\s+(\-?\d+\.?[\d\-\+e]*)/g;
// pattern for connectivity, an integer followed by any number of ints
// the first integer is the number of polygon nodes
const patConnectivity = /^(\d+)\s+([\s\d]*)/;
// indicates start of vertex data section
const patPOINTS = /^POINTS /;
// indicates start of polygon connectivity section
const patPOLYGONS = /^POLYGONS /;
// indicates start of triangle strips section
const patTRIANGLE_STRIPS = /^TRIANGLE_STRIPS /;
// POINT_DATA number_of_values
const patPOINT_DATA = /^POINT_DATA[ ]+(\d+)/;
// CELL_DATA number_of_polys
const patCELL_DATA = /^CELL_DATA[ ]+(\d+)/;
// Start of color section
const patCOLOR_SCALARS = /^COLOR_SCALARS[ ]+(\w+)[ ]+3/;
// NORMALS Normals float
const patNORMALS = /^NORMALS[ ]+(\w+)[ ]+(\w+)/;
let inPointsSection = false;
let inPolygonsSection = false;
let inTriangleStripSection = false;
let inPointDataSection = false;
let inCellDataSection = false;
let inColorSection = false;
let inNormalsSection = false;
const color = new Color();
const lines = data.split( '\n' );
for ( const i in lines ) {
const line = lines[ i ].trim();
if ( line.indexOf( 'DATASET' ) === 0 ) {
const dataset = line.split( ' ' )[ 1 ];
if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );
} else if ( inPointsSection ) {
// get the vertices
while ( ( result = pat3Floats.exec( line ) ) !== null ) {
if ( patWord.exec( line ) !== null ) break;
const x = parseFloat( result[ 1 ] );
const y = parseFloat( result[ 2 ] );
const z = parseFloat( result[ 3 ] );
positions.push( x, y, z );
}
} else if ( inPolygonsSection ) {
if ( ( result = patConnectivity.exec( line ) ) !== null ) {
// numVertices i0 i1 i2 ...
const numVertices = parseInt( result[ 1 ] );
const inds = result[ 2 ].split( /\s+/ );
if ( numVertices >= 3 ) {
const i0 = parseInt( inds[ 0 ] );
let k = 1;
// split the polygon in numVertices - 2 triangles
for ( let j = 0; j < numVertices - 2; ++ j ) {
const i1 = parseInt( inds[ k ] );
const i2 = parseInt( inds[ k + 1 ] );
indices.push( i0, i1, i2 );
k ++;
}
}
}
} else if ( inTriangleStripSection ) {
if ( ( result = patConnectivity.exec( line ) ) !== null ) {
// numVertices i0 i1 i2 ...
const numVertices = parseInt( result[ 1 ] );
const inds = result[ 2 ].split( /\s+/ );
if ( numVertices >= 3 ) {
// split the polygon in numVertices - 2 triangles
for ( let j = 0; j < numVertices - 2; j ++ ) {
if ( j % 2 === 1 ) {
const i0 = parseInt( inds[ j ] );
const i1 = parseInt( inds[ j + 2 ] );
const i2 = parseInt( inds[ j + 1 ] );
indices.push( i0, i1, i2 );
} else {
const i0 = parseInt( inds[ j ] );
const i1 = parseInt( inds[ j + 1 ] );
const i2 = parseInt( inds[ j + 2 ] );
indices.push( i0, i1, i2 );
}
}
}
}
} else if ( inPointDataSection || inCellDataSection ) {
if ( inColorSection ) {
// Get the colors
while ( ( result = pat3Floats.exec( line ) ) !== null ) {
if ( patWord.exec( line ) !== null ) break;
const r = parseFloat( result[ 1 ] );
const g = parseFloat( result[ 2 ] );
const b = parseFloat( result[ 3 ] );
color.set( r, g, b ).convertSRGBToLinear();
colors.push( color.r, color.g, color.b );
}
} else if ( inNormalsSection ) {
// Get the normal vectors
while ( ( result = pat3Floats.exec( line ) ) !== null ) {
if ( patWord.exec( line ) !== null ) break;
const nx = parseFloat( result[ 1 ] );
const ny = parseFloat( result[ 2 ] );
const nz = parseFloat( result[ 3 ] );
normals.push( nx, ny, nz );
}
}
}
if ( patPOLYGONS.exec( line ) !== null ) {
inPolygonsSection = true;
inPointsSection = false;
inTriangleStripSection = false;
} else if ( patPOINTS.exec( line ) !== null ) {
inPolygonsSection = false;
inPointsSection = true;
inTriangleStripSection = false;
} else if ( patTRIANGLE_STRIPS.exec( line ) !== null ) {
inPolygonsSection = false;
inPointsSection = false;
inTriangleStripSection = true;
} else if ( patPOINT_DATA.exec( line ) !== null ) {
inPointDataSection = true;
inPointsSection = false;
inPolygonsSection = false;
inTriangleStripSection = false;
} else if ( patCELL_DATA.exec( line ) !== null ) {
inCellDataSection = true;
inPointsSection = false;
inPolygonsSection = false;
inTriangleStripSection = false;
} else if ( patCOLOR_SCALARS.exec( line ) !== null ) {
inColorSection = true;
inNormalsSection = false;
inPointsSection = false;
inPolygonsSection = false;
inTriangleStripSection = false;
} else if ( patNORMALS.exec( line ) !== null ) {
inNormalsSection = true;
inColorSection = false;
inPointsSection = false;
inPolygonsSection = false;
inTriangleStripSection = false;
}
}
let geometry = new BufferGeometry();
geometry.setIndex( indices );
geometry.setAttribute( 'position', new Float32BufferAttribute( positions, 3 ) );
if ( normals.length === positions.length ) {
geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
}
if ( colors.length !== indices.length ) {
// stagger
if ( colors.length === positions.length ) {
geometry.setAttribute( 'color', new Float32BufferAttribute( colors, 3 ) );
}
} else {
// cell
geometry = geometry.toNonIndexed();
const numTriangles = geometry.attributes.position.count / 3;
if ( colors.length === ( numTriangles * 3 ) ) {
const newColors = [];
for ( let i = 0; i < numTriangles; i ++ ) {
const r = colors[ 3 * i + 0 ];
const g = colors[ 3 * i + 1 ];
const b = colors[ 3 * i + 2 ];
color.set( r, g, b ).convertSRGBToLinear();
newColors.push( color.r, color.g, color.b );
newColors.push( color.r, color.g, color.b );
newColors.push( color.r, color.g, color.b );
}
geometry.setAttribute( 'color', new Float32BufferAttribute( newColors, 3 ) );
}
}
return geometry;
}
function parseBinary( data ) {
const buffer = new Uint8Array( data );
const dataView = new DataView( data );
// Points and normals, by default, are empty
let points = [];
let normals = [];
let indices = [];
let index = 0;
function findString( buffer, start ) {
let index = start;
let c = buffer[ index ];
const s = [];
while ( c !== 10 ) {
s.push( String.fromCharCode( c ) );
index ++;
c = buffer[ index ];
}
return { start: start,
end: index,
next: index + 1,
parsedString: s.join( '' ) };
}
let state, line;
while ( true ) {
// Get a string
state = findString( buffer, index );
line = state.parsedString;
if ( line.indexOf( 'DATASET' ) === 0 ) {
const dataset = line.split( ' ' )[ 1 ];
if ( dataset !== 'POLYDATA' ) throw new Error( 'Unsupported DATASET type: ' + dataset );
} else if ( line.indexOf( 'POINTS' ) === 0 ) {
// Add the points
const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );
// Each point is 3 4-byte floats
const count = numberOfPoints * 4 * 3;
points = new Float32Array( numberOfPoints * 3 );
let pointIndex = state.next;
for ( let i = 0; i < numberOfPoints; i ++ ) {
points[ 3 * i ] = dataView.getFloat32( pointIndex, false );
points[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
points[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
pointIndex = pointIndex + 12;
}
// increment our next pointer
state.next = state.next + count + 1;
} else if ( line.indexOf( 'TRIANGLE_STRIPS' ) === 0 ) {
const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
const size = parseInt( line.split( ' ' )[ 2 ], 10 );
// 4 byte integers
const count = size * 4;
indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
let indicesIndex = 0;
let pointIndex = state.next;
for ( let i = 0; i < numberOfStrips; i ++ ) {
// For each strip, read the first value, then record that many more points
const indexCount = dataView.getInt32( pointIndex, false );
const strip = [];
pointIndex += 4;
for ( let s = 0; s < indexCount; s ++ ) {
strip.push( dataView.getInt32( pointIndex, false ) );
pointIndex += 4;
}
// retrieves the n-2 triangles from the triangle strip
for ( let j = 0; j < indexCount - 2; j ++ ) {
if ( j % 2 ) {
indices[ indicesIndex ++ ] = strip[ j ];
indices[ indicesIndex ++ ] = strip[ j + 2 ];
indices[ indicesIndex ++ ] = strip[ j + 1 ];
} else {
indices[ indicesIndex ++ ] = strip[ j ];
indices[ indicesIndex ++ ] = strip[ j + 1 ];
indices[ indicesIndex ++ ] = strip[ j + 2 ];
}
}
}
// increment our next pointer
state.next = state.next + count + 1;
} else if ( line.indexOf( 'POLYGONS' ) === 0 ) {
const numberOfStrips = parseInt( line.split( ' ' )[ 1 ], 10 );
const size = parseInt( line.split( ' ' )[ 2 ], 10 );
// 4 byte integers
const count = size * 4;
indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
let indicesIndex = 0;
let pointIndex = state.next;
for ( let i = 0; i < numberOfStrips; i ++ ) {
// For each strip, read the first value, then record that many more points
const indexCount = dataView.getInt32( pointIndex, false );
const strip = [];
pointIndex += 4;
for ( let s = 0; s < indexCount; s ++ ) {
strip.push( dataView.getInt32( pointIndex, false ) );
pointIndex += 4;
}
// divide the polygon in n-2 triangle
for ( let j = 1; j < indexCount - 1; j ++ ) {
indices[ indicesIndex ++ ] = strip[ 0 ];
indices[ indicesIndex ++ ] = strip[ j ];
indices[ indicesIndex ++ ] = strip[ j + 1 ];
}
}
// increment our next pointer
state.next = state.next + count + 1;
} else if ( line.indexOf( 'POINT_DATA' ) === 0 ) {
const numberOfPoints = parseInt( line.split( ' ' )[ 1 ], 10 );
// Grab the next line
state = findString( buffer, state.next );
// Now grab the binary data
const count = numberOfPoints * 4 * 3;
normals = new Float32Array( numberOfPoints * 3 );
let pointIndex = state.next;
for ( let i = 0; i < numberOfPoints; i ++ ) {
normals[ 3 * i ] = dataView.getFloat32( pointIndex, false );
normals[ 3 * i + 1 ] = dataView.getFloat32( pointIndex + 4, false );
normals[ 3 * i + 2 ] = dataView.getFloat32( pointIndex + 8, false );
pointIndex += 12;
}
// Increment past our data
state.next = state.next + count;
}
// Increment index
index = state.next;
if ( index >= buffer.byteLength ) {
break;
}
}
const geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( indices, 1 ) );
geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );
if ( normals.length === points.length ) {
geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
}
return geometry;
}
function Float32Concat( first, second ) {
const firstLength = first.length, result = new Float32Array( firstLength + second.length );
result.set( first );
result.set( second, firstLength );
return result;
}
function Int32Concat( first, second ) {
const firstLength = first.length, result = new Int32Array( firstLength + second.length );
result.set( first );
result.set( second, firstLength );
return result;
}
function parseXML( stringFile ) {
// Changes XML to JSON, based on https://davidwalsh.name/convert-xml-json
function xmlToJson( xml ) {
// Create the return object
let obj = {};
if ( xml.nodeType === 1 ) { // element
// do attributes
if ( xml.attributes ) {
if ( xml.attributes.length > 0 ) {
obj[ 'attributes' ] = {};
for ( let j = 0; j < xml.attributes.length; j ++ ) {
const attribute = xml.attributes.item( j );
obj[ 'attributes' ][ attribute.nodeName ] = attribute.nodeValue.trim();
}
}
}
} else if ( xml.nodeType === 3 ) { // text
obj = xml.nodeValue.trim();
}
// do children
if ( xml.hasChildNodes() ) {
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const item = xml.childNodes.item( i );
const nodeName = item.nodeName;
if ( typeof obj[ nodeName ] === 'undefined' ) {
const tmp = xmlToJson( item );
if ( tmp !== '' ) obj[ nodeName ] = tmp;
} else {
if ( typeof obj[ nodeName ].push === 'undefined' ) {
const old = obj[ nodeName ];
obj[ nodeName ] = [ old ];
}
const tmp = xmlToJson( item );
if ( tmp !== '' ) obj[ nodeName ].push( tmp );
}
}
}
return obj;
}
// Taken from Base64-js
function Base64toByteArray( b64 ) {
const Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;
const revLookup = [];
const code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
for ( let i = 0, l = code.length; i < l; ++ i ) {
revLookup[ code.charCodeAt( i ) ] = i;
}
revLookup[ '-'.charCodeAt( 0 ) ] = 62;
revLookup[ '_'.charCodeAt( 0 ) ] = 63;
const len = b64.length;
if ( len % 4 > 0 ) {
throw new Error( 'Invalid string. Length must be a multiple of 4' );
}
const placeHolders = b64[ len - 2 ] === '=' ? 2 : b64[ len - 1 ] === '=' ? 1 : 0;
const arr = new Arr( len * 3 / 4 - placeHolders );
const l = placeHolders > 0 ? len - 4 : len;
let L = 0;
let i, j;
for ( i = 0, j = 0; i < l; i += 4, j += 3 ) {
const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 18 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 12 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] << 6 ) | revLookup[ b64.charCodeAt( i + 3 ) ];
arr[ L ++ ] = ( tmp & 0xFF0000 ) >> 16;
arr[ L ++ ] = ( tmp & 0xFF00 ) >> 8;
arr[ L ++ ] = tmp & 0xFF;
}
if ( placeHolders === 2 ) {
const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 2 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] >> 4 );
arr[ L ++ ] = tmp & 0xFF;
} else if ( placeHolders === 1 ) {
const tmp = ( revLookup[ b64.charCodeAt( i ) ] << 10 ) | ( revLookup[ b64.charCodeAt( i + 1 ) ] << 4 ) | ( revLookup[ b64.charCodeAt( i + 2 ) ] >> 2 );
arr[ L ++ ] = ( tmp >> 8 ) & 0xFF;
arr[ L ++ ] = tmp & 0xFF;
}
return arr;
}
function parseDataArray( ele, compressed ) {
let numBytes = 0;
if ( json.attributes.header_type === 'UInt64' ) {
numBytes = 8;
} else if ( json.attributes.header_type === 'UInt32' ) {
numBytes = 4;
}
let txt, content;
// Check the format
if ( ele.attributes.format === 'binary' && compressed ) {
if ( ele.attributes.type === 'Float32' ) {
txt = new Float32Array( );
} else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {
txt = new Int32Array( );
}
// VTP data with the header has the following structure:
// [#blocks][#u-size][#p-size][#c-size-1][#c-size-2]...[#c-size-#blocks][DATA]
//
// Each token is an integer value whose type is specified by "header_type" at the top of the file (UInt32 if no type specified). The token meanings are:
// [#blocks] = Number of blocks
// [#u-size] = Block size before compression
// [#p-size] = Size of last partial block (zero if it not needed)
// [#c-size-i] = Size in bytes of block i after compression
//
// The [DATA] portion stores contiguously every block appended together. The offset from the beginning of the data section to the beginning of a block is
// computed by summing the compressed block sizes from preceding blocks according to the header.
const textNode = ele[ '#text' ];
const rawData = Array.isArray( textNode ) ? textNode[ 0 ] : textNode;
const byteData = Base64toByteArray( rawData );
// Each data point consists of 8 bits regardless of the header type
const dataPointSize = 8;
let blocks = byteData[ 0 ];
for ( let i = 1; i < numBytes - 1; i ++ ) {
blocks = blocks | ( byteData[ i ] << ( i * dataPointSize ) );
}
let headerSize = ( blocks + 3 ) * numBytes;
const padding = ( ( headerSize % 3 ) > 0 ) ? 3 - ( headerSize % 3 ) : 0;
headerSize = headerSize + padding;
const dataOffsets = [];
let currentOffset = headerSize;
dataOffsets.push( currentOffset );
// Get the blocks sizes after the compression.
// There are three blocks before c-size-i, so we skip 3*numBytes
const cSizeStart = 3 * numBytes;
for ( let i = 0; i < blocks; i ++ ) {
let currentBlockSize = byteData[ i * numBytes + cSizeStart ];
for ( let j = 1; j < numBytes - 1; j ++ ) {
currentBlockSize = currentBlockSize | ( byteData[ i * numBytes + cSizeStart + j ] << ( j * dataPointSize ) );
}
currentOffset = currentOffset + currentBlockSize;
dataOffsets.push( currentOffset );
}
for ( let i = 0; i < dataOffsets.length - 1; i ++ ) {
const data = fflate.unzlibSync( byteData.slice( dataOffsets[ i ], dataOffsets[ i + 1 ] ) );
content = data.buffer;
if ( ele.attributes.type === 'Float32' ) {
content = new Float32Array( content );
txt = Float32Concat( txt, content );
} else if ( ele.attributes.type === 'Int32' || ele.attributes.type === 'Int64' ) {
content = new Int32Array( content );
txt = Int32Concat( txt, content );
}
}
delete ele[ '#text' ];
if ( ele.attributes.type === 'Int64' ) {
if ( ele.attributes.format === 'binary' ) {
txt = txt.filter( function ( el, idx ) {
if ( idx % 2 !== 1 ) return true;
} );
}
}
} else {
if ( ele.attributes.format === 'binary' && ! compressed ) {
content = Base64toByteArray( ele[ '#text' ] );
// VTP data for the uncompressed case has the following structure:
// [#bytes][DATA]
// where "[#bytes]" is an integer value specifying the number of bytes in the block of data following it.
content = content.slice( numBytes ).buffer;
} else {
if ( ele[ '#text' ] ) {
content = ele[ '#text' ].split( /\s+/ ).filter( function ( el ) {
if ( el !== '' ) return el;
} );
} else {
content = new Int32Array( 0 ).buffer;
}
}
delete ele[ '#text' ];
// Get the content and optimize it
if ( ele.attributes.type === 'Float32' ) {
txt = new Float32Array( content );
} else if ( ele.attributes.type === 'Int32' ) {
txt = new Int32Array( content );
} else if ( ele.attributes.type === 'Int64' ) {
txt = new Int32Array( content );
if ( ele.attributes.format === 'binary' ) {
txt = txt.filter( function ( el, idx ) {
if ( idx % 2 !== 1 ) return true;
} );
}
}
} // endif ( ele.attributes.format === 'binary' && compressed )
return txt;
}
// Main part
// Get Dom
const dom = new DOMParser().parseFromString( stringFile, 'application/xml' );
// Get the doc
const doc = dom.documentElement;
// Convert to json
const json = xmlToJson( doc );
let points = [];
let normals = [];
let indices = [];
if ( json.PolyData ) {
const piece = json.PolyData.Piece;
const compressed = json.attributes.hasOwnProperty( 'compressor' );
// Can be optimized
// Loop through the sections
const sections = [ 'PointData', 'Points', 'Strips', 'Polys' ];// +['CellData', 'Verts', 'Lines'];
let sectionIndex = 0;
const numberOfSections = sections.length;
while ( sectionIndex < numberOfSections ) {
const section = piece[ sections[ sectionIndex ] ];
// If it has a DataArray in it
if ( section && section.DataArray ) {
// Depending on the number of DataArrays
let arr;
if ( Array.isArray( section.DataArray ) ) {
arr = section.DataArray;
} else {
arr = [ section.DataArray ];
}
let dataArrayIndex = 0;
const numberOfDataArrays = arr.length;
while ( dataArrayIndex < numberOfDataArrays ) {
// Parse the DataArray
if ( ( '#text' in arr[ dataArrayIndex ] ) && ( arr[ dataArrayIndex ][ '#text' ].length > 0 ) ) {
arr[ dataArrayIndex ].text = parseDataArray( arr[ dataArrayIndex ], compressed );
}
dataArrayIndex ++;
}
switch ( sections[ sectionIndex ] ) {
// if iti is point data
case 'PointData':
{
const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
const normalsName = section.attributes.Normals;
if ( numberOfPoints > 0 ) {
for ( let i = 0, len = arr.length; i < len; i ++ ) {
if ( normalsName === arr[ i ].attributes.Name ) {
const components = arr[ i ].attributes.NumberOfComponents;
normals = new Float32Array( numberOfPoints * components );
normals.set( arr[ i ].text, 0 );
}
}
}
}
break;
// if it is points
case 'Points':
{
const numberOfPoints = parseInt( piece.attributes.NumberOfPoints );
if ( numberOfPoints > 0 ) {
const components = section.DataArray.attributes.NumberOfComponents;
points = new Float32Array( numberOfPoints * components );
points.set( section.DataArray.text, 0 );
}
}
break;
// if it is strips
case 'Strips':
{
const numberOfStrips = parseInt( piece.attributes.NumberOfStrips );
if ( numberOfStrips > 0 ) {
const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
const offset = new Int32Array( section.DataArray[ 1 ].text.length );
connectivity.set( section.DataArray[ 0 ].text, 0 );
offset.set( section.DataArray[ 1 ].text, 0 );
const size = numberOfStrips + connectivity.length;
indices = new Uint32Array( 3 * size - 9 * numberOfStrips );
let indicesIndex = 0;
for ( let i = 0, len = numberOfStrips; i < len; i ++ ) {
const strip = [];
for ( let s = 0, len1 = offset[ i ], len0 = 0; s < len1 - len0; s ++ ) {
strip.push( connectivity[ s ] );
if ( i > 0 ) len0 = offset[ i - 1 ];
}
for ( let j = 0, len1 = offset[ i ], len0 = 0; j < len1 - len0 - 2; j ++ ) {
if ( j % 2 ) {
indices[ indicesIndex ++ ] = strip[ j ];
indices[ indicesIndex ++ ] = strip[ j + 2 ];
indices[ indicesIndex ++ ] = strip[ j + 1 ];
} else {
indices[ indicesIndex ++ ] = strip[ j ];
indices[ indicesIndex ++ ] = strip[ j + 1 ];
indices[ indicesIndex ++ ] = strip[ j + 2 ];
}
if ( i > 0 ) len0 = offset[ i - 1 ];
}
}
}
}
break;
// if it is polys
case 'Polys':
{
const numberOfPolys = parseInt( piece.attributes.NumberOfPolys );
if ( numberOfPolys > 0 ) {
const connectivity = new Int32Array( section.DataArray[ 0 ].text.length );
const offset = new Int32Array( section.DataArray[ 1 ].text.length );
connectivity.set( section.DataArray[ 0 ].text, 0 );
offset.set( section.DataArray[ 1 ].text, 0 );
const size = numberOfPolys + connectivity.length;
indices = new Uint32Array( 3 * size - 9 * numberOfPolys );
let indicesIndex = 0, connectivityIndex = 0;
let i = 0, len0 = 0;
const len = numberOfPolys;
while ( i < len ) {
const poly = [];
let s = 0;
const len1 = offset[ i ];
while ( s < len1 - len0 ) {
poly.push( connectivity[ connectivityIndex ++ ] );
s ++;
}
let j = 1;
while ( j < len1 - len0 - 1 ) {
indices[ indicesIndex ++ ] = poly[ 0 ];
indices[ indicesIndex ++ ] = poly[ j ];
indices[ indicesIndex ++ ] = poly[ j + 1 ];
j ++;
}
i ++;
len0 = offset[ i - 1 ];
}
}
}
break;
default:
break;
}
}
sectionIndex ++;
}
const geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( indices, 1 ) );
geometry.setAttribute( 'position', new BufferAttribute( points, 3 ) );
if ( normals.length === points.length ) {
geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
}
return geometry;
} else {
throw new Error( 'Unsupported DATASET type' );
}
}
const textDecoder = new TextDecoder();
// get the 5 first lines of the files to check if there is the key word binary
const meta = textDecoder.decode( new Uint8Array( data, 0, 250 ) ).split( '\n' );
if ( meta[ 0 ].indexOf( 'xml' ) !== - 1 ) {
return parseXML( textDecoder.decode( data ) );
} else if ( meta[ 2 ].includes( 'ASCII' ) ) {
return parseASCII( textDecoder.decode( data ) );
} else {
return parseBinary( data );
}
}
}
export { VTKLoader };