You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3538 lines
72 KiB
3538 lines
72 KiB
import {
|
|
BackSide,
|
|
BoxGeometry,
|
|
BufferAttribute,
|
|
BufferGeometry,
|
|
ClampToEdgeWrapping,
|
|
Color,
|
|
ConeGeometry,
|
|
CylinderGeometry,
|
|
DataTexture,
|
|
DoubleSide,
|
|
FileLoader,
|
|
Float32BufferAttribute,
|
|
FrontSide,
|
|
Group,
|
|
LineBasicMaterial,
|
|
LineSegments,
|
|
Loader,
|
|
LoaderUtils,
|
|
Mesh,
|
|
MeshBasicMaterial,
|
|
MeshPhongMaterial,
|
|
Object3D,
|
|
Points,
|
|
PointsMaterial,
|
|
Quaternion,
|
|
RepeatWrapping,
|
|
Scene,
|
|
ShapeUtils,
|
|
SphereGeometry,
|
|
SRGBColorSpace,
|
|
TextureLoader,
|
|
Vector2,
|
|
Vector3
|
|
} from 'three';
|
|
import chevrotain from '../libs/chevrotain.module.min.js';
|
|
|
|
|
|
class VRMLLoader extends Loader {
|
|
|
|
constructor( manager ) {
|
|
|
|
super( manager );
|
|
|
|
}
|
|
|
|
load( url, onLoad, onProgress, onError ) {
|
|
|
|
const scope = this;
|
|
|
|
const path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
|
|
|
|
const loader = new FileLoader( scope.manager );
|
|
loader.setPath( scope.path );
|
|
loader.setRequestHeader( scope.requestHeader );
|
|
loader.setWithCredentials( scope.withCredentials );
|
|
loader.load( url, function ( text ) {
|
|
|
|
try {
|
|
|
|
onLoad( scope.parse( text, path ) );
|
|
|
|
} catch ( e ) {
|
|
|
|
if ( onError ) {
|
|
|
|
onError( e );
|
|
|
|
} else {
|
|
|
|
console.error( e );
|
|
|
|
}
|
|
|
|
scope.manager.itemError( url );
|
|
|
|
}
|
|
|
|
}, onProgress, onError );
|
|
|
|
}
|
|
|
|
parse( data, path ) {
|
|
|
|
const nodeMap = {};
|
|
|
|
function generateVRMLTree( data ) {
|
|
|
|
// create lexer, parser and visitor
|
|
|
|
const tokenData = createTokens();
|
|
|
|
const lexer = new VRMLLexer( tokenData.tokens );
|
|
const parser = new VRMLParser( tokenData.tokenVocabulary );
|
|
const visitor = createVisitor( parser.getBaseCstVisitorConstructor() );
|
|
|
|
// lexing
|
|
|
|
const lexingResult = lexer.lex( data );
|
|
parser.input = lexingResult.tokens;
|
|
|
|
// parsing
|
|
|
|
const cstOutput = parser.vrml();
|
|
|
|
if ( parser.errors.length > 0 ) {
|
|
|
|
console.error( parser.errors );
|
|
|
|
throw Error( 'THREE.VRMLLoader: Parsing errors detected.' );
|
|
|
|
}
|
|
|
|
// actions
|
|
|
|
const ast = visitor.visit( cstOutput );
|
|
|
|
return ast;
|
|
|
|
}
|
|
|
|
function createTokens() {
|
|
|
|
const createToken = chevrotain.createToken;
|
|
|
|
// from http://gun.teipir.gr/VRML-amgem/spec/part1/concepts.html#SyntaxBasics
|
|
|
|
const RouteIdentifier = createToken( { name: 'RouteIdentifier', pattern: /[^\x30-\x39\0-\x20\x22\x27\x23\x2b\x2c\x2d\x2e\x5b\x5d\x5c\x7b\x7d][^\0-\x20\x22\x27\x23\x2b\x2c\x2d\x2e\x5b\x5d\x5c\x7b\x7d]*[\.][^\x30-\x39\0-\x20\x22\x27\x23\x2b\x2c\x2d\x2e\x5b\x5d\x5c\x7b\x7d][^\0-\x20\x22\x27\x23\x2b\x2c\x2d\x2e\x5b\x5d\x5c\x7b\x7d]*/ } );
|
|
const Identifier = createToken( { name: 'Identifier', pattern: /[^\x30-\x39\0-\x20\x22\x27\x23\x2b\x2c\x2d\x2e\x5b\x5d\x5c\x7b\x7d]([^\0-\x20\x22\x27\x23\x2b\x2c\x2e\x5b\x5d\x5c\x7b\x7d])*/, longer_alt: RouteIdentifier } );
|
|
|
|
// from http://gun.teipir.gr/VRML-amgem/spec/part1/nodesRef.html
|
|
|
|
const nodeTypes = [
|
|
'Anchor', 'Billboard', 'Collision', 'Group', 'Transform', // grouping nodes
|
|
'Inline', 'LOD', 'Switch', // special groups
|
|
'AudioClip', 'DirectionalLight', 'PointLight', 'Script', 'Shape', 'Sound', 'SpotLight', 'WorldInfo', // common nodes
|
|
'CylinderSensor', 'PlaneSensor', 'ProximitySensor', 'SphereSensor', 'TimeSensor', 'TouchSensor', 'VisibilitySensor', // sensors
|
|
'Box', 'Cone', 'Cylinder', 'ElevationGrid', 'Extrusion', 'IndexedFaceSet', 'IndexedLineSet', 'PointSet', 'Sphere', // geometries
|
|
'Color', 'Coordinate', 'Normal', 'TextureCoordinate', // geometric properties
|
|
'Appearance', 'FontStyle', 'ImageTexture', 'Material', 'MovieTexture', 'PixelTexture', 'TextureTransform', // appearance
|
|
'ColorInterpolator', 'CoordinateInterpolator', 'NormalInterpolator', 'OrientationInterpolator', 'PositionInterpolator', 'ScalarInterpolator', // interpolators
|
|
'Background', 'Fog', 'NavigationInfo', 'Viewpoint', // bindable nodes
|
|
'Text' // Text must be placed at the end of the regex so there are no matches for TextureTransform and TextureCoordinate
|
|
];
|
|
|
|
//
|
|
|
|
const Version = createToken( {
|
|
name: 'Version',
|
|
pattern: /#VRML.*/,
|
|
longer_alt: Identifier
|
|
} );
|
|
|
|
const NodeName = createToken( {
|
|
name: 'NodeName',
|
|
pattern: new RegExp( nodeTypes.join( '|' ) ),
|
|
longer_alt: Identifier
|
|
} );
|
|
|
|
const DEF = createToken( {
|
|
name: 'DEF',
|
|
pattern: /DEF/,
|
|
longer_alt: Identifier
|
|
} );
|
|
|
|
const USE = createToken( {
|
|
name: 'USE',
|
|
pattern: /USE/,
|
|
longer_alt: Identifier
|
|
} );
|
|
|
|
const ROUTE = createToken( {
|
|
name: 'ROUTE',
|
|
pattern: /ROUTE/,
|
|
longer_alt: Identifier
|
|
} );
|
|
|
|
const TO = createToken( {
|
|
name: 'TO',
|
|
pattern: /TO/,
|
|
longer_alt: Identifier
|
|
} );
|
|
|
|
//
|
|
|
|
const StringLiteral = createToken( { name: 'StringLiteral', pattern: /"(?:[^\\"\n\r]|\\[bfnrtv"\\/]|\\u[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F])*"/ } );
|
|
const HexLiteral = createToken( { name: 'HexLiteral', pattern: /0[xX][0-9a-fA-F]+/ } );
|
|
const NumberLiteral = createToken( { name: 'NumberLiteral', pattern: /[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?/ } );
|
|
const TrueLiteral = createToken( { name: 'TrueLiteral', pattern: /TRUE/ } );
|
|
const FalseLiteral = createToken( { name: 'FalseLiteral', pattern: /FALSE/ } );
|
|
const NullLiteral = createToken( { name: 'NullLiteral', pattern: /NULL/ } );
|
|
const LSquare = createToken( { name: 'LSquare', pattern: /\[/ } );
|
|
const RSquare = createToken( { name: 'RSquare', pattern: /]/ } );
|
|
const LCurly = createToken( { name: 'LCurly', pattern: /{/ } );
|
|
const RCurly = createToken( { name: 'RCurly', pattern: /}/ } );
|
|
const Comment = createToken( {
|
|
name: 'Comment',
|
|
pattern: /#.*/,
|
|
group: chevrotain.Lexer.SKIPPED
|
|
} );
|
|
|
|
// commas, blanks, tabs, newlines and carriage returns are whitespace characters wherever they appear outside of string fields
|
|
|
|
const WhiteSpace = createToken( {
|
|
name: 'WhiteSpace',
|
|
pattern: /[ ,\s]/,
|
|
group: chevrotain.Lexer.SKIPPED
|
|
} );
|
|
|
|
const tokens = [
|
|
WhiteSpace,
|
|
// keywords appear before the Identifier
|
|
NodeName,
|
|
DEF,
|
|
USE,
|
|
ROUTE,
|
|
TO,
|
|
TrueLiteral,
|
|
FalseLiteral,
|
|
NullLiteral,
|
|
// the Identifier must appear after the keywords because all keywords are valid identifiers
|
|
Version,
|
|
Identifier,
|
|
RouteIdentifier,
|
|
StringLiteral,
|
|
HexLiteral,
|
|
NumberLiteral,
|
|
LSquare,
|
|
RSquare,
|
|
LCurly,
|
|
RCurly,
|
|
Comment
|
|
];
|
|
|
|
const tokenVocabulary = {};
|
|
|
|
for ( let i = 0, l = tokens.length; i < l; i ++ ) {
|
|
|
|
const token = tokens[ i ];
|
|
|
|
tokenVocabulary[ token.name ] = token;
|
|
|
|
}
|
|
|
|
return { tokens: tokens, tokenVocabulary: tokenVocabulary };
|
|
|
|
}
|
|
|
|
|
|
function createVisitor( BaseVRMLVisitor ) {
|
|
|
|
// the visitor is created dynmaically based on the given base class
|
|
|
|
class VRMLToASTVisitor extends BaseVRMLVisitor {
|
|
|
|
constructor() {
|
|
|
|
super();
|
|
|
|
this.validateVisitor();
|
|
|
|
}
|
|
|
|
vrml( ctx ) {
|
|
|
|
const data = {
|
|
version: this.visit( ctx.version ),
|
|
nodes: [],
|
|
routes: []
|
|
};
|
|
|
|
for ( let i = 0, l = ctx.node.length; i < l; i ++ ) {
|
|
|
|
const node = ctx.node[ i ];
|
|
|
|
data.nodes.push( this.visit( node ) );
|
|
|
|
}
|
|
|
|
if ( ctx.route ) {
|
|
|
|
for ( let i = 0, l = ctx.route.length; i < l; i ++ ) {
|
|
|
|
const route = ctx.route[ i ];
|
|
|
|
data.routes.push( this.visit( route ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
version( ctx ) {
|
|
|
|
return ctx.Version[ 0 ].image;
|
|
|
|
}
|
|
|
|
node( ctx ) {
|
|
|
|
const data = {
|
|
name: ctx.NodeName[ 0 ].image,
|
|
fields: []
|
|
};
|
|
|
|
if ( ctx.field ) {
|
|
|
|
for ( let i = 0, l = ctx.field.length; i < l; i ++ ) {
|
|
|
|
const field = ctx.field[ i ];
|
|
|
|
data.fields.push( this.visit( field ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// DEF
|
|
|
|
if ( ctx.def ) {
|
|
|
|
data.DEF = this.visit( ctx.def[ 0 ] );
|
|
|
|
}
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
field( ctx ) {
|
|
|
|
const data = {
|
|
name: ctx.Identifier[ 0 ].image,
|
|
type: null,
|
|
values: null
|
|
};
|
|
|
|
let result;
|
|
|
|
// SFValue
|
|
|
|
if ( ctx.singleFieldValue ) {
|
|
|
|
result = this.visit( ctx.singleFieldValue[ 0 ] );
|
|
|
|
}
|
|
|
|
// MFValue
|
|
|
|
if ( ctx.multiFieldValue ) {
|
|
|
|
result = this.visit( ctx.multiFieldValue[ 0 ] );
|
|
|
|
}
|
|
|
|
data.type = result.type;
|
|
data.values = result.values;
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
def( ctx ) {
|
|
|
|
return ( ctx.Identifier || ctx.NodeName )[ 0 ].image;
|
|
|
|
}
|
|
|
|
use( ctx ) {
|
|
|
|
return { USE: ( ctx.Identifier || ctx.NodeName )[ 0 ].image };
|
|
|
|
}
|
|
|
|
singleFieldValue( ctx ) {
|
|
|
|
return processField( this, ctx );
|
|
|
|
}
|
|
|
|
multiFieldValue( ctx ) {
|
|
|
|
return processField( this, ctx );
|
|
|
|
}
|
|
|
|
route( ctx ) {
|
|
|
|
const data = {
|
|
FROM: ctx.RouteIdentifier[ 0 ].image,
|
|
TO: ctx.RouteIdentifier[ 1 ].image
|
|
};
|
|
|
|
return data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function processField( scope, ctx ) {
|
|
|
|
const field = {
|
|
type: null,
|
|
values: []
|
|
};
|
|
|
|
if ( ctx.node ) {
|
|
|
|
field.type = 'node';
|
|
|
|
for ( let i = 0, l = ctx.node.length; i < l; i ++ ) {
|
|
|
|
const node = ctx.node[ i ];
|
|
|
|
field.values.push( scope.visit( node ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.use ) {
|
|
|
|
field.type = 'use';
|
|
|
|
for ( let i = 0, l = ctx.use.length; i < l; i ++ ) {
|
|
|
|
const use = ctx.use[ i ];
|
|
|
|
field.values.push( scope.visit( use ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.StringLiteral ) {
|
|
|
|
field.type = 'string';
|
|
|
|
for ( let i = 0, l = ctx.StringLiteral.length; i < l; i ++ ) {
|
|
|
|
const stringLiteral = ctx.StringLiteral[ i ];
|
|
|
|
field.values.push( stringLiteral.image.replace( /'|"/g, '' ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.NumberLiteral ) {
|
|
|
|
field.type = 'number';
|
|
|
|
for ( let i = 0, l = ctx.NumberLiteral.length; i < l; i ++ ) {
|
|
|
|
const numberLiteral = ctx.NumberLiteral[ i ];
|
|
|
|
field.values.push( parseFloat( numberLiteral.image ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.HexLiteral ) {
|
|
|
|
field.type = 'hex';
|
|
|
|
for ( let i = 0, l = ctx.HexLiteral.length; i < l; i ++ ) {
|
|
|
|
const hexLiteral = ctx.HexLiteral[ i ];
|
|
|
|
field.values.push( hexLiteral.image );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.TrueLiteral ) {
|
|
|
|
field.type = 'boolean';
|
|
|
|
for ( let i = 0, l = ctx.TrueLiteral.length; i < l; i ++ ) {
|
|
|
|
const trueLiteral = ctx.TrueLiteral[ i ];
|
|
|
|
if ( trueLiteral.image === 'TRUE' ) field.values.push( true );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.FalseLiteral ) {
|
|
|
|
field.type = 'boolean';
|
|
|
|
for ( let i = 0, l = ctx.FalseLiteral.length; i < l; i ++ ) {
|
|
|
|
const falseLiteral = ctx.FalseLiteral[ i ];
|
|
|
|
if ( falseLiteral.image === 'FALSE' ) field.values.push( false );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( ctx.NullLiteral ) {
|
|
|
|
field.type = 'null';
|
|
|
|
ctx.NullLiteral.forEach( function () {
|
|
|
|
field.values.push( null );
|
|
|
|
} );
|
|
|
|
}
|
|
|
|
return field;
|
|
|
|
}
|
|
|
|
return new VRMLToASTVisitor();
|
|
|
|
}
|
|
|
|
function parseTree( tree ) {
|
|
|
|
// console.log( JSON.stringify( tree, null, 2 ) );
|
|
|
|
const nodes = tree.nodes;
|
|
const scene = new Scene();
|
|
|
|
// first iteration: build nodemap based on DEF statements
|
|
|
|
for ( let i = 0, l = nodes.length; i < l; i ++ ) {
|
|
|
|
const node = nodes[ i ];
|
|
|
|
buildNodeMap( node );
|
|
|
|
}
|
|
|
|
// second iteration: build nodes
|
|
|
|
for ( let i = 0, l = nodes.length; i < l; i ++ ) {
|
|
|
|
const node = nodes[ i ];
|
|
const object = getNode( node );
|
|
|
|
if ( object instanceof Object3D ) scene.add( object );
|
|
|
|
if ( node.name === 'WorldInfo' ) scene.userData.worldInfo = object;
|
|
|
|
}
|
|
|
|
return scene;
|
|
|
|
}
|
|
|
|
function buildNodeMap( node ) {
|
|
|
|
if ( node.DEF ) {
|
|
|
|
nodeMap[ node.DEF ] = node;
|
|
|
|
}
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
|
|
if ( field.type === 'node' ) {
|
|
|
|
const fieldValues = field.values;
|
|
|
|
for ( let j = 0, jl = fieldValues.length; j < jl; j ++ ) {
|
|
|
|
buildNodeMap( fieldValues[ j ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
function getNode( node ) {
|
|
|
|
// handle case where a node refers to a different one
|
|
|
|
if ( node.USE ) {
|
|
|
|
return resolveUSE( node.USE );
|
|
|
|
}
|
|
|
|
if ( node.build !== undefined ) return node.build;
|
|
|
|
node.build = buildNode( node );
|
|
|
|
return node.build;
|
|
|
|
}
|
|
|
|
// node builder
|
|
|
|
function buildNode( node ) {
|
|
|
|
const nodeName = node.name;
|
|
let build;
|
|
|
|
switch ( nodeName ) {
|
|
|
|
case 'Anchor':
|
|
case 'Group':
|
|
case 'Transform':
|
|
case 'Collision':
|
|
build = buildGroupingNode( node );
|
|
break;
|
|
|
|
case 'Background':
|
|
build = buildBackgroundNode( node );
|
|
break;
|
|
|
|
case 'Shape':
|
|
build = buildShapeNode( node );
|
|
break;
|
|
|
|
case 'Appearance':
|
|
build = buildAppearanceNode( node );
|
|
break;
|
|
|
|
case 'Material':
|
|
build = buildMaterialNode( node );
|
|
break;
|
|
|
|
case 'ImageTexture':
|
|
build = buildImageTextureNode( node );
|
|
break;
|
|
|
|
case 'PixelTexture':
|
|
build = buildPixelTextureNode( node );
|
|
break;
|
|
|
|
case 'TextureTransform':
|
|
build = buildTextureTransformNode( node );
|
|
break;
|
|
|
|
case 'IndexedFaceSet':
|
|
build = buildIndexedFaceSetNode( node );
|
|
break;
|
|
|
|
case 'IndexedLineSet':
|
|
build = buildIndexedLineSetNode( node );
|
|
break;
|
|
|
|
case 'PointSet':
|
|
build = buildPointSetNode( node );
|
|
break;
|
|
|
|
case 'Box':
|
|
build = buildBoxNode( node );
|
|
break;
|
|
|
|
case 'Cone':
|
|
build = buildConeNode( node );
|
|
break;
|
|
|
|
case 'Cylinder':
|
|
build = buildCylinderNode( node );
|
|
break;
|
|
|
|
case 'Sphere':
|
|
build = buildSphereNode( node );
|
|
break;
|
|
|
|
case 'ElevationGrid':
|
|
build = buildElevationGridNode( node );
|
|
break;
|
|
|
|
case 'Extrusion':
|
|
build = buildExtrusionNode( node );
|
|
break;
|
|
|
|
case 'Color':
|
|
case 'Coordinate':
|
|
case 'Normal':
|
|
case 'TextureCoordinate':
|
|
build = buildGeometricNode( node );
|
|
break;
|
|
|
|
case 'WorldInfo':
|
|
build = buildWorldInfoNode( node );
|
|
break;
|
|
|
|
case 'Billboard':
|
|
|
|
case 'Inline':
|
|
case 'LOD':
|
|
case 'Switch':
|
|
|
|
case 'AudioClip':
|
|
case 'DirectionalLight':
|
|
case 'PointLight':
|
|
case 'Script':
|
|
case 'Sound':
|
|
case 'SpotLight':
|
|
|
|
case 'CylinderSensor':
|
|
case 'PlaneSensor':
|
|
case 'ProximitySensor':
|
|
case 'SphereSensor':
|
|
case 'TimeSensor':
|
|
case 'TouchSensor':
|
|
case 'VisibilitySensor':
|
|
|
|
case 'Text':
|
|
|
|
case 'FontStyle':
|
|
case 'MovieTexture':
|
|
|
|
case 'ColorInterpolator':
|
|
case 'CoordinateInterpolator':
|
|
case 'NormalInterpolator':
|
|
case 'OrientationInterpolator':
|
|
case 'PositionInterpolator':
|
|
case 'ScalarInterpolator':
|
|
|
|
case 'Fog':
|
|
case 'NavigationInfo':
|
|
case 'Viewpoint':
|
|
// node not supported yet
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown node:', nodeName );
|
|
break;
|
|
|
|
}
|
|
|
|
if ( build !== undefined && node.DEF !== undefined && build.hasOwnProperty( 'name' ) === true ) {
|
|
|
|
build.name = node.DEF;
|
|
|
|
}
|
|
|
|
return build;
|
|
|
|
}
|
|
|
|
function buildGroupingNode( node ) {
|
|
|
|
const object = new Group();
|
|
|
|
//
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'bboxCenter':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'bboxSize':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'center':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'children':
|
|
parseFieldChildren( fieldValues, object );
|
|
break;
|
|
|
|
case 'description':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'collide':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'parameter':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'rotation':
|
|
const axis = new Vector3( fieldValues[ 0 ], fieldValues[ 1 ], fieldValues[ 2 ] ).normalize();
|
|
const angle = fieldValues[ 3 ];
|
|
object.quaternion.setFromAxisAngle( axis, angle );
|
|
break;
|
|
|
|
case 'scale':
|
|
object.scale.set( fieldValues[ 0 ], fieldValues[ 1 ], fieldValues[ 2 ] );
|
|
break;
|
|
|
|
case 'scaleOrientation':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'translation':
|
|
object.position.set( fieldValues[ 0 ], fieldValues[ 1 ], fieldValues[ 2 ] );
|
|
break;
|
|
|
|
case 'proxy':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'url':
|
|
// field not supported
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return object;
|
|
|
|
}
|
|
|
|
function buildBackgroundNode( node ) {
|
|
|
|
const group = new Group();
|
|
|
|
let groundAngle, groundColor;
|
|
let skyAngle, skyColor;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'groundAngle':
|
|
groundAngle = fieldValues;
|
|
break;
|
|
|
|
case 'groundColor':
|
|
groundColor = fieldValues;
|
|
break;
|
|
|
|
case 'backUrl':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'bottomUrl':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'frontUrl':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'leftUrl':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'rightUrl':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'topUrl':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'skyAngle':
|
|
skyAngle = fieldValues;
|
|
break;
|
|
|
|
case 'skyColor':
|
|
skyColor = fieldValues;
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const radius = 10000;
|
|
|
|
// sky
|
|
|
|
if ( skyColor ) {
|
|
|
|
const skyGeometry = new SphereGeometry( radius, 32, 16 );
|
|
const skyMaterial = new MeshBasicMaterial( { fog: false, side: BackSide, depthWrite: false, depthTest: false } );
|
|
|
|
if ( skyColor.length > 3 ) {
|
|
|
|
paintFaces( skyGeometry, radius, skyAngle, toColorArray( skyColor ), true );
|
|
skyMaterial.vertexColors = true;
|
|
|
|
} else {
|
|
|
|
skyMaterial.color.setRGB( skyColor[ 0 ], skyColor[ 1 ], skyColor[ 2 ] );
|
|
skyMaterial.color.convertSRGBToLinear();
|
|
|
|
}
|
|
|
|
const sky = new Mesh( skyGeometry, skyMaterial );
|
|
group.add( sky );
|
|
|
|
}
|
|
|
|
// ground
|
|
|
|
if ( groundColor ) {
|
|
|
|
if ( groundColor.length > 0 ) {
|
|
|
|
const groundGeometry = new SphereGeometry( radius, 32, 16, 0, 2 * Math.PI, 0.5 * Math.PI, 1.5 * Math.PI );
|
|
const groundMaterial = new MeshBasicMaterial( { fog: false, side: BackSide, vertexColors: true, depthWrite: false, depthTest: false } );
|
|
|
|
paintFaces( groundGeometry, radius, groundAngle, toColorArray( groundColor ), false );
|
|
|
|
const ground = new Mesh( groundGeometry, groundMaterial );
|
|
group.add( ground );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// render background group first
|
|
|
|
group.renderOrder = - Infinity;
|
|
|
|
return group;
|
|
|
|
}
|
|
|
|
function buildShapeNode( node ) {
|
|
|
|
const fields = node.fields;
|
|
|
|
// if the appearance field is NULL or unspecified, lighting is off and the unlit object color is (0, 0, 0)
|
|
|
|
let material = new MeshBasicMaterial( {
|
|
name: Loader.DEFAULT_MATERIAL_NAME,
|
|
color: 0x000000
|
|
} );
|
|
let geometry;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'appearance':
|
|
if ( fieldValues[ 0 ] !== null ) {
|
|
|
|
material = getNode( fieldValues[ 0 ] );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'geometry':
|
|
if ( fieldValues[ 0 ] !== null ) {
|
|
|
|
geometry = getNode( fieldValues[ 0 ] );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// build 3D object
|
|
|
|
let object;
|
|
|
|
if ( geometry && geometry.attributes.position ) {
|
|
|
|
const type = geometry._type;
|
|
|
|
if ( type === 'points' ) { // points
|
|
|
|
const pointsMaterial = new PointsMaterial( {
|
|
name: Loader.DEFAULT_MATERIAL_NAME,
|
|
color: 0xffffff,
|
|
opacity: material.opacity,
|
|
transparent: material.transparent
|
|
} );
|
|
|
|
if ( geometry.attributes.color !== undefined ) {
|
|
|
|
pointsMaterial.vertexColors = true;
|
|
|
|
} else {
|
|
|
|
// if the color field is NULL and there is a material defined for the appearance affecting this PointSet, then use the emissiveColor of the material to draw the points
|
|
|
|
if ( material.isMeshPhongMaterial ) {
|
|
|
|
pointsMaterial.color.copy( material.emissive );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
object = new Points( geometry, pointsMaterial );
|
|
|
|
} else if ( type === 'line' ) { // lines
|
|
|
|
const lineMaterial = new LineBasicMaterial( {
|
|
name: Loader.DEFAULT_MATERIAL_NAME,
|
|
color: 0xffffff,
|
|
opacity: material.opacity,
|
|
transparent: material.transparent
|
|
} );
|
|
|
|
if ( geometry.attributes.color !== undefined ) {
|
|
|
|
lineMaterial.vertexColors = true;
|
|
|
|
} else {
|
|
|
|
// if the color field is NULL and there is a material defined for the appearance affecting this IndexedLineSet, then use the emissiveColor of the material to draw the lines
|
|
|
|
if ( material.isMeshPhongMaterial ) {
|
|
|
|
lineMaterial.color.copy( material.emissive );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
object = new LineSegments( geometry, lineMaterial );
|
|
|
|
} else { // consider meshes
|
|
|
|
// check "solid" hint (it's placed in the geometry but affects the material)
|
|
|
|
if ( geometry._solid !== undefined ) {
|
|
|
|
material.side = ( geometry._solid ) ? FrontSide : DoubleSide;
|
|
|
|
}
|
|
|
|
// check for vertex colors
|
|
|
|
if ( geometry.attributes.color !== undefined ) {
|
|
|
|
material.vertexColors = true;
|
|
|
|
}
|
|
|
|
object = new Mesh( geometry, material );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
object = new Object3D();
|
|
|
|
// if the geometry field is NULL or no vertices are defined the object is not drawn
|
|
|
|
object.visible = false;
|
|
|
|
}
|
|
|
|
return object;
|
|
|
|
}
|
|
|
|
function buildAppearanceNode( node ) {
|
|
|
|
let material = new MeshPhongMaterial();
|
|
let transformData;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'material':
|
|
if ( fieldValues[ 0 ] !== null ) {
|
|
|
|
const materialData = getNode( fieldValues[ 0 ] );
|
|
|
|
if ( materialData.diffuseColor ) material.color.copy( materialData.diffuseColor );
|
|
if ( materialData.emissiveColor ) material.emissive.copy( materialData.emissiveColor );
|
|
if ( materialData.shininess ) material.shininess = materialData.shininess;
|
|
if ( materialData.specularColor ) material.specular.copy( materialData.specularColor );
|
|
if ( materialData.transparency ) material.opacity = 1 - materialData.transparency;
|
|
if ( materialData.transparency > 0 ) material.transparent = true;
|
|
|
|
} else {
|
|
|
|
// if the material field is NULL or unspecified, lighting is off and the unlit object color is (0, 0, 0)
|
|
|
|
material = new MeshBasicMaterial( {
|
|
name: Loader.DEFAULT_MATERIAL_NAME,
|
|
color: 0x000000
|
|
} );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'texture':
|
|
const textureNode = fieldValues[ 0 ];
|
|
if ( textureNode !== null ) {
|
|
|
|
if ( textureNode.name === 'ImageTexture' || textureNode.name === 'PixelTexture' ) {
|
|
|
|
material.map = getNode( textureNode );
|
|
|
|
} else {
|
|
|
|
// MovieTexture not supported yet
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'textureTransform':
|
|
if ( fieldValues[ 0 ] !== null ) {
|
|
|
|
transformData = getNode( fieldValues[ 0 ] );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// only apply texture transform data if a texture was defined
|
|
|
|
if ( material.map ) {
|
|
|
|
// respect VRML lighting model
|
|
|
|
if ( material.map.__type ) {
|
|
|
|
switch ( material.map.__type ) {
|
|
|
|
case TEXTURE_TYPE.INTENSITY_ALPHA:
|
|
material.opacity = 1; // ignore transparency
|
|
break;
|
|
|
|
case TEXTURE_TYPE.RGB:
|
|
material.color.set( 0xffffff ); // ignore material color
|
|
break;
|
|
|
|
case TEXTURE_TYPE.RGBA:
|
|
material.color.set( 0xffffff ); // ignore material color
|
|
material.opacity = 1; // ignore transparency
|
|
break;
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
delete material.map.__type;
|
|
|
|
}
|
|
|
|
// apply texture transform
|
|
|
|
if ( transformData ) {
|
|
|
|
material.map.center.copy( transformData.center );
|
|
material.map.rotation = transformData.rotation;
|
|
material.map.repeat.copy( transformData.scale );
|
|
material.map.offset.copy( transformData.translation );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return material;
|
|
|
|
}
|
|
|
|
function buildMaterialNode( node ) {
|
|
|
|
const materialData = {};
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'ambientIntensity':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'diffuseColor':
|
|
materialData.diffuseColor = new Color( fieldValues[ 0 ], fieldValues[ 1 ], fieldValues[ 2 ] );
|
|
materialData.diffuseColor.convertSRGBToLinear();
|
|
break;
|
|
|
|
case 'emissiveColor':
|
|
materialData.emissiveColor = new Color( fieldValues[ 0 ], fieldValues[ 1 ], fieldValues[ 2 ] );
|
|
materialData.emissiveColor.convertSRGBToLinear();
|
|
break;
|
|
|
|
case 'shininess':
|
|
materialData.shininess = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'specularColor':
|
|
materialData.specularColor = new Color( fieldValues[ 0 ], fieldValues[ 1 ], fieldValues[ 2 ] );
|
|
materialData.specularColor.convertSRGBToLinear();
|
|
break;
|
|
|
|
case 'transparency':
|
|
materialData.transparency = fieldValues[ 0 ];
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return materialData;
|
|
|
|
}
|
|
|
|
function parseHexColor( hex, textureType, color ) {
|
|
|
|
let value;
|
|
|
|
switch ( textureType ) {
|
|
|
|
case TEXTURE_TYPE.INTENSITY:
|
|
// Intensity texture: A one-component image specifies one-byte hexadecimal or integer values representing the intensity of the image
|
|
value = parseInt( hex );
|
|
color.r = value;
|
|
color.g = value;
|
|
color.b = value;
|
|
color.a = 1;
|
|
break;
|
|
|
|
case TEXTURE_TYPE.INTENSITY_ALPHA:
|
|
// Intensity+Alpha texture: A two-component image specifies the intensity in the first (high) byte and the alpha opacity in the second (low) byte.
|
|
value = parseInt( '0x' + hex.substring( 2, 4 ) );
|
|
color.r = value;
|
|
color.g = value;
|
|
color.b = value;
|
|
color.a = parseInt( '0x' + hex.substring( 4, 6 ) );
|
|
break;
|
|
|
|
case TEXTURE_TYPE.RGB:
|
|
// RGB texture: Pixels in a three-component image specify the red component in the first (high) byte, followed by the green and blue components
|
|
color.r = parseInt( '0x' + hex.substring( 2, 4 ) );
|
|
color.g = parseInt( '0x' + hex.substring( 4, 6 ) );
|
|
color.b = parseInt( '0x' + hex.substring( 6, 8 ) );
|
|
color.a = 1;
|
|
break;
|
|
|
|
case TEXTURE_TYPE.RGBA:
|
|
// RGBA texture: Four-component images specify the alpha opacity byte after red/green/blue
|
|
color.r = parseInt( '0x' + hex.substring( 2, 4 ) );
|
|
color.g = parseInt( '0x' + hex.substring( 4, 6 ) );
|
|
color.b = parseInt( '0x' + hex.substring( 6, 8 ) );
|
|
color.a = parseInt( '0x' + hex.substring( 8, 10 ) );
|
|
break;
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function getTextureType( num_components ) {
|
|
|
|
let type;
|
|
|
|
switch ( num_components ) {
|
|
|
|
case 1:
|
|
type = TEXTURE_TYPE.INTENSITY;
|
|
break;
|
|
|
|
case 2:
|
|
type = TEXTURE_TYPE.INTENSITY_ALPHA;
|
|
break;
|
|
|
|
case 3:
|
|
type = TEXTURE_TYPE.RGB;
|
|
break;
|
|
|
|
case 4:
|
|
type = TEXTURE_TYPE.RGBA;
|
|
break;
|
|
|
|
default:
|
|
|
|
}
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
function buildPixelTextureNode( node ) {
|
|
|
|
let texture;
|
|
let wrapS = RepeatWrapping;
|
|
let wrapT = RepeatWrapping;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'image':
|
|
const width = fieldValues[ 0 ];
|
|
const height = fieldValues[ 1 ];
|
|
const num_components = fieldValues[ 2 ];
|
|
|
|
const textureType = getTextureType( num_components );
|
|
|
|
const data = new Uint8Array( 4 * width * height );
|
|
|
|
const color = { r: 0, g: 0, b: 0, a: 0 };
|
|
|
|
for ( let j = 3, k = 0, jl = fieldValues.length; j < jl; j ++, k ++ ) {
|
|
|
|
parseHexColor( fieldValues[ j ], textureType, color );
|
|
|
|
const stride = k * 4;
|
|
|
|
data[ stride + 0 ] = color.r;
|
|
data[ stride + 1 ] = color.g;
|
|
data[ stride + 2 ] = color.b;
|
|
data[ stride + 3 ] = color.a;
|
|
|
|
}
|
|
|
|
texture = new DataTexture( data, width, height );
|
|
texture.colorSpace = SRGBColorSpace;
|
|
texture.needsUpdate = true;
|
|
texture.__type = textureType; // needed for material modifications
|
|
break;
|
|
|
|
case 'repeatS':
|
|
if ( fieldValues[ 0 ] === false ) wrapS = ClampToEdgeWrapping;
|
|
break;
|
|
|
|
case 'repeatT':
|
|
if ( fieldValues[ 0 ] === false ) wrapT = ClampToEdgeWrapping;
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( texture ) {
|
|
|
|
texture.wrapS = wrapS;
|
|
texture.wrapT = wrapT;
|
|
|
|
}
|
|
|
|
return texture;
|
|
|
|
}
|
|
|
|
function buildImageTextureNode( node ) {
|
|
|
|
let texture;
|
|
let wrapS = RepeatWrapping;
|
|
let wrapT = RepeatWrapping;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'url':
|
|
const url = fieldValues[ 0 ];
|
|
if ( url ) texture = textureLoader.load( url );
|
|
break;
|
|
|
|
case 'repeatS':
|
|
if ( fieldValues[ 0 ] === false ) wrapS = ClampToEdgeWrapping;
|
|
break;
|
|
|
|
case 'repeatT':
|
|
if ( fieldValues[ 0 ] === false ) wrapT = ClampToEdgeWrapping;
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( texture ) {
|
|
|
|
texture.wrapS = wrapS;
|
|
texture.wrapT = wrapT;
|
|
texture.colorSpace = SRGBColorSpace;
|
|
|
|
}
|
|
|
|
return texture;
|
|
|
|
}
|
|
|
|
function buildTextureTransformNode( node ) {
|
|
|
|
const transformData = {
|
|
center: new Vector2(),
|
|
rotation: new Vector2(),
|
|
scale: new Vector2(),
|
|
translation: new Vector2()
|
|
};
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'center':
|
|
transformData.center.set( fieldValues[ 0 ], fieldValues[ 1 ] );
|
|
break;
|
|
|
|
case 'rotation':
|
|
transformData.rotation = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'scale':
|
|
transformData.scale.set( fieldValues[ 0 ], fieldValues[ 1 ] );
|
|
break;
|
|
|
|
case 'translation':
|
|
transformData.translation.set( fieldValues[ 0 ], fieldValues[ 1 ] );
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return transformData;
|
|
|
|
}
|
|
|
|
function buildGeometricNode( node ) {
|
|
|
|
return node.fields[ 0 ].values;
|
|
|
|
}
|
|
|
|
function buildWorldInfoNode( node ) {
|
|
|
|
const worldInfo = {};
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'title':
|
|
worldInfo.title = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'info':
|
|
worldInfo.info = fieldValues;
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return worldInfo;
|
|
|
|
}
|
|
|
|
function buildIndexedFaceSetNode( node ) {
|
|
|
|
let color, coord, normal, texCoord;
|
|
let ccw = true, solid = true, creaseAngle = 0;
|
|
let colorIndex, coordIndex, normalIndex, texCoordIndex;
|
|
let colorPerVertex = true, normalPerVertex = true;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'color':
|
|
const colorNode = fieldValues[ 0 ];
|
|
|
|
if ( colorNode !== null ) {
|
|
|
|
color = getNode( colorNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'coord':
|
|
const coordNode = fieldValues[ 0 ];
|
|
|
|
if ( coordNode !== null ) {
|
|
|
|
coord = getNode( coordNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'normal':
|
|
const normalNode = fieldValues[ 0 ];
|
|
|
|
if ( normalNode !== null ) {
|
|
|
|
normal = getNode( normalNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'texCoord':
|
|
const texCoordNode = fieldValues[ 0 ];
|
|
|
|
if ( texCoordNode !== null ) {
|
|
|
|
texCoord = getNode( texCoordNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'ccw':
|
|
ccw = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'colorIndex':
|
|
colorIndex = fieldValues;
|
|
break;
|
|
|
|
case 'colorPerVertex':
|
|
colorPerVertex = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'convex':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'coordIndex':
|
|
coordIndex = fieldValues;
|
|
break;
|
|
|
|
case 'creaseAngle':
|
|
creaseAngle = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'normalIndex':
|
|
normalIndex = fieldValues;
|
|
break;
|
|
|
|
case 'normalPerVertex':
|
|
normalPerVertex = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'solid':
|
|
solid = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'texCoordIndex':
|
|
texCoordIndex = fieldValues;
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if ( coordIndex === undefined ) {
|
|
|
|
console.warn( 'THREE.VRMLLoader: Missing coordIndex.' );
|
|
|
|
return new BufferGeometry(); // handle VRML files with incomplete geometry definition
|
|
|
|
}
|
|
|
|
const triangulatedCoordIndex = triangulateFaceIndex( coordIndex, ccw );
|
|
|
|
let colorAttribute;
|
|
let normalAttribute;
|
|
let uvAttribute;
|
|
|
|
if ( color ) {
|
|
|
|
if ( colorPerVertex === true ) {
|
|
|
|
if ( colorIndex && colorIndex.length > 0 ) {
|
|
|
|
// if the colorIndex field is not empty, then it is used to choose colors for each vertex of the IndexedFaceSet.
|
|
|
|
const triangulatedColorIndex = triangulateFaceIndex( colorIndex, ccw );
|
|
colorAttribute = computeAttributeFromIndexedData( triangulatedCoordIndex, triangulatedColorIndex, color, 3 );
|
|
|
|
} else {
|
|
|
|
// if the colorIndex field is empty, then the coordIndex field is used to choose colors from the Color node
|
|
|
|
colorAttribute = toNonIndexedAttribute( triangulatedCoordIndex, new Float32BufferAttribute( color, 3 ) );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ( colorIndex && colorIndex.length > 0 ) {
|
|
|
|
// if the colorIndex field is not empty, then they are used to choose one color for each face of the IndexedFaceSet
|
|
|
|
const flattenFaceColors = flattenData( color, colorIndex );
|
|
const triangulatedFaceColors = triangulateFaceData( flattenFaceColors, coordIndex );
|
|
colorAttribute = computeAttributeFromFaceData( triangulatedCoordIndex, triangulatedFaceColors );
|
|
|
|
} else {
|
|
|
|
// if the colorIndex field is empty, then the color are applied to each face of the IndexedFaceSet in order
|
|
|
|
const triangulatedFaceColors = triangulateFaceData( color, coordIndex );
|
|
colorAttribute = computeAttributeFromFaceData( triangulatedCoordIndex, triangulatedFaceColors );
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
convertColorsToLinearSRGB( colorAttribute );
|
|
|
|
}
|
|
|
|
if ( normal ) {
|
|
|
|
if ( normalPerVertex === true ) {
|
|
|
|
// consider vertex normals
|
|
|
|
if ( normalIndex && normalIndex.length > 0 ) {
|
|
|
|
// if the normalIndex field is not empty, then it is used to choose normals for each vertex of the IndexedFaceSet.
|
|
|
|
const triangulatedNormalIndex = triangulateFaceIndex( normalIndex, ccw );
|
|
normalAttribute = computeAttributeFromIndexedData( triangulatedCoordIndex, triangulatedNormalIndex, normal, 3 );
|
|
|
|
} else {
|
|
|
|
// if the normalIndex field is empty, then the coordIndex field is used to choose normals from the Normal node
|
|
|
|
normalAttribute = toNonIndexedAttribute( triangulatedCoordIndex, new Float32BufferAttribute( normal, 3 ) );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// consider face normals
|
|
|
|
if ( normalIndex && normalIndex.length > 0 ) {
|
|
|
|
// if the normalIndex field is not empty, then they are used to choose one normal for each face of the IndexedFaceSet
|
|
|
|
const flattenFaceNormals = flattenData( normal, normalIndex );
|
|
const triangulatedFaceNormals = triangulateFaceData( flattenFaceNormals, coordIndex );
|
|
normalAttribute = computeAttributeFromFaceData( triangulatedCoordIndex, triangulatedFaceNormals );
|
|
|
|
} else {
|
|
|
|
// if the normalIndex field is empty, then the normals are applied to each face of the IndexedFaceSet in order
|
|
|
|
const triangulatedFaceNormals = triangulateFaceData( normal, coordIndex );
|
|
normalAttribute = computeAttributeFromFaceData( triangulatedCoordIndex, triangulatedFaceNormals );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// if the normal field is NULL, then the loader should automatically generate normals, using creaseAngle to determine if and how normals are smoothed across shared vertices
|
|
|
|
normalAttribute = computeNormalAttribute( triangulatedCoordIndex, coord, creaseAngle );
|
|
|
|
}
|
|
|
|
if ( texCoord ) {
|
|
|
|
// texture coordinates are always defined on vertex level
|
|
|
|
if ( texCoordIndex && texCoordIndex.length > 0 ) {
|
|
|
|
// if the texCoordIndex field is not empty, then it is used to choose texture coordinates for each vertex of the IndexedFaceSet.
|
|
|
|
const triangulatedTexCoordIndex = triangulateFaceIndex( texCoordIndex, ccw );
|
|
uvAttribute = computeAttributeFromIndexedData( triangulatedCoordIndex, triangulatedTexCoordIndex, texCoord, 2 );
|
|
|
|
|
|
} else {
|
|
|
|
// if the texCoordIndex field is empty, then the coordIndex array is used to choose texture coordinates from the TextureCoordinate node
|
|
|
|
uvAttribute = toNonIndexedAttribute( triangulatedCoordIndex, new Float32BufferAttribute( texCoord, 2 ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const geometry = new BufferGeometry();
|
|
const positionAttribute = toNonIndexedAttribute( triangulatedCoordIndex, new Float32BufferAttribute( coord, 3 ) );
|
|
|
|
geometry.setAttribute( 'position', positionAttribute );
|
|
geometry.setAttribute( 'normal', normalAttribute );
|
|
|
|
// optional attributes
|
|
|
|
if ( colorAttribute ) geometry.setAttribute( 'color', colorAttribute );
|
|
if ( uvAttribute ) geometry.setAttribute( 'uv', uvAttribute );
|
|
|
|
// "solid" influences the material so let's store it for later use
|
|
|
|
geometry._solid = solid;
|
|
geometry._type = 'mesh';
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildIndexedLineSetNode( node ) {
|
|
|
|
let color, coord;
|
|
let colorIndex, coordIndex;
|
|
let colorPerVertex = true;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'color':
|
|
const colorNode = fieldValues[ 0 ];
|
|
|
|
if ( colorNode !== null ) {
|
|
|
|
color = getNode( colorNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'coord':
|
|
const coordNode = fieldValues[ 0 ];
|
|
|
|
if ( coordNode !== null ) {
|
|
|
|
coord = getNode( coordNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'colorIndex':
|
|
colorIndex = fieldValues;
|
|
break;
|
|
|
|
case 'colorPerVertex':
|
|
colorPerVertex = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'coordIndex':
|
|
coordIndex = fieldValues;
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// build lines
|
|
|
|
let colorAttribute;
|
|
|
|
const expandedLineIndex = expandLineIndex( coordIndex ); // create an index for three.js's linesegment primitive
|
|
|
|
if ( color ) {
|
|
|
|
if ( colorPerVertex === true ) {
|
|
|
|
if ( colorIndex.length > 0 ) {
|
|
|
|
// if the colorIndex field is not empty, then one color is used for each polyline of the IndexedLineSet.
|
|
|
|
const expandedColorIndex = expandLineIndex( colorIndex ); // compute colors for each line segment (rendering primitve)
|
|
colorAttribute = computeAttributeFromIndexedData( expandedLineIndex, expandedColorIndex, color, 3 ); // compute data on vertex level
|
|
|
|
} else {
|
|
|
|
// if the colorIndex field is empty, then the colors are applied to each polyline of the IndexedLineSet in order.
|
|
|
|
colorAttribute = toNonIndexedAttribute( expandedLineIndex, new Float32BufferAttribute( color, 3 ) );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ( colorIndex.length > 0 ) {
|
|
|
|
// if the colorIndex field is not empty, then colors are applied to each vertex of the IndexedLineSet
|
|
|
|
const flattenLineColors = flattenData( color, colorIndex ); // compute colors for each VRML primitve
|
|
const expandedLineColors = expandLineData( flattenLineColors, coordIndex ); // compute colors for each line segment (rendering primitve)
|
|
colorAttribute = computeAttributeFromLineData( expandedLineIndex, expandedLineColors ); // compute data on vertex level
|
|
|
|
|
|
} else {
|
|
|
|
// if the colorIndex field is empty, then the coordIndex field is used to choose colors from the Color node
|
|
|
|
const expandedLineColors = expandLineData( color, coordIndex ); // compute colors for each line segment (rendering primitve)
|
|
colorAttribute = computeAttributeFromLineData( expandedLineIndex, expandedLineColors ); // compute data on vertex level
|
|
|
|
}
|
|
|
|
}
|
|
|
|
convertColorsToLinearSRGB( colorAttribute );
|
|
|
|
}
|
|
|
|
//
|
|
|
|
const geometry = new BufferGeometry();
|
|
|
|
const positionAttribute = toNonIndexedAttribute( expandedLineIndex, new Float32BufferAttribute( coord, 3 ) );
|
|
geometry.setAttribute( 'position', positionAttribute );
|
|
|
|
if ( colorAttribute ) geometry.setAttribute( 'color', colorAttribute );
|
|
|
|
geometry._type = 'line';
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildPointSetNode( node ) {
|
|
|
|
let color, coord;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'color':
|
|
const colorNode = fieldValues[ 0 ];
|
|
|
|
if ( colorNode !== null ) {
|
|
|
|
color = getNode( colorNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'coord':
|
|
const coordNode = fieldValues[ 0 ];
|
|
|
|
if ( coordNode !== null ) {
|
|
|
|
coord = getNode( coordNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const geometry = new BufferGeometry();
|
|
|
|
geometry.setAttribute( 'position', new Float32BufferAttribute( coord, 3 ) );
|
|
|
|
if ( color ) {
|
|
|
|
const colorAttribute = new Float32BufferAttribute( color, 3 );
|
|
convertColorsToLinearSRGB( colorAttribute );
|
|
|
|
geometry.setAttribute( 'color', colorAttribute );
|
|
|
|
}
|
|
|
|
geometry._type = 'points';
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildBoxNode( node ) {
|
|
|
|
const size = new Vector3( 2, 2, 2 );
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'size':
|
|
size.x = fieldValues[ 0 ];
|
|
size.y = fieldValues[ 1 ];
|
|
size.z = fieldValues[ 2 ];
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const geometry = new BoxGeometry( size.x, size.y, size.z );
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildConeNode( node ) {
|
|
|
|
let radius = 1, height = 2, openEnded = false;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'bottom':
|
|
openEnded = ! fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'bottomRadius':
|
|
radius = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'height':
|
|
height = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'side':
|
|
// field not supported
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const geometry = new ConeGeometry( radius, height, 16, 1, openEnded );
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildCylinderNode( node ) {
|
|
|
|
let radius = 1, height = 2;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'bottom':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'radius':
|
|
radius = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'height':
|
|
height = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'side':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'top':
|
|
// field not supported
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const geometry = new CylinderGeometry( radius, radius, height, 16, 1 );
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildSphereNode( node ) {
|
|
|
|
let radius = 1;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'radius':
|
|
radius = fieldValues[ 0 ];
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const geometry = new SphereGeometry( radius, 16, 16 );
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildElevationGridNode( node ) {
|
|
|
|
let color;
|
|
let normal;
|
|
let texCoord;
|
|
let height;
|
|
|
|
let colorPerVertex = true;
|
|
let normalPerVertex = true;
|
|
let solid = true;
|
|
let ccw = true;
|
|
let creaseAngle = 0;
|
|
let xDimension = 2;
|
|
let zDimension = 2;
|
|
let xSpacing = 1;
|
|
let zSpacing = 1;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'color':
|
|
const colorNode = fieldValues[ 0 ];
|
|
|
|
if ( colorNode !== null ) {
|
|
|
|
color = getNode( colorNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'normal':
|
|
const normalNode = fieldValues[ 0 ];
|
|
|
|
if ( normalNode !== null ) {
|
|
|
|
normal = getNode( normalNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'texCoord':
|
|
const texCoordNode = fieldValues[ 0 ];
|
|
|
|
if ( texCoordNode !== null ) {
|
|
|
|
texCoord = getNode( texCoordNode );
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'height':
|
|
height = fieldValues;
|
|
break;
|
|
|
|
case 'ccw':
|
|
ccw = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'colorPerVertex':
|
|
colorPerVertex = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'creaseAngle':
|
|
creaseAngle = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'normalPerVertex':
|
|
normalPerVertex = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'solid':
|
|
solid = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'xDimension':
|
|
xDimension = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'xSpacing':
|
|
xSpacing = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'zDimension':
|
|
zDimension = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'zSpacing':
|
|
zSpacing = fieldValues[ 0 ];
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// vertex data
|
|
|
|
const vertices = [];
|
|
const normals = [];
|
|
const colors = [];
|
|
const uvs = [];
|
|
|
|
for ( let i = 0; i < zDimension; i ++ ) {
|
|
|
|
for ( let j = 0; j < xDimension; j ++ ) {
|
|
|
|
// compute a row major index
|
|
|
|
const index = ( i * xDimension ) + j;
|
|
|
|
// vertices
|
|
|
|
const x = xSpacing * i;
|
|
const y = height[ index ];
|
|
const z = zSpacing * j;
|
|
|
|
vertices.push( x, y, z );
|
|
|
|
// colors
|
|
|
|
if ( color && colorPerVertex === true ) {
|
|
|
|
const r = color[ index * 3 + 0 ];
|
|
const g = color[ index * 3 + 1 ];
|
|
const b = color[ index * 3 + 2 ];
|
|
|
|
colors.push( r, g, b );
|
|
|
|
}
|
|
|
|
// normals
|
|
|
|
if ( normal && normalPerVertex === true ) {
|
|
|
|
const xn = normal[ index * 3 + 0 ];
|
|
const yn = normal[ index * 3 + 1 ];
|
|
const zn = normal[ index * 3 + 2 ];
|
|
|
|
normals.push( xn, yn, zn );
|
|
|
|
}
|
|
|
|
// uvs
|
|
|
|
if ( texCoord ) {
|
|
|
|
const s = texCoord[ index * 2 + 0 ];
|
|
const t = texCoord[ index * 2 + 1 ];
|
|
|
|
uvs.push( s, t );
|
|
|
|
|
|
} else {
|
|
|
|
uvs.push( i / ( xDimension - 1 ), j / ( zDimension - 1 ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// indices
|
|
|
|
const indices = [];
|
|
|
|
for ( let i = 0; i < xDimension - 1; i ++ ) {
|
|
|
|
for ( let j = 0; j < zDimension - 1; j ++ ) {
|
|
|
|
// from https://tecfa.unige.ch/guides/vrml/vrml97/spec/part1/nodesRef.html#ElevationGrid
|
|
|
|
const a = i + j * xDimension;
|
|
const b = i + ( j + 1 ) * xDimension;
|
|
const c = ( i + 1 ) + ( j + 1 ) * xDimension;
|
|
const d = ( i + 1 ) + j * xDimension;
|
|
|
|
// faces
|
|
|
|
if ( ccw === true ) {
|
|
|
|
indices.push( a, c, b );
|
|
indices.push( c, a, d );
|
|
|
|
} else {
|
|
|
|
indices.push( a, b, c );
|
|
indices.push( c, d, a );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
const positionAttribute = toNonIndexedAttribute( indices, new Float32BufferAttribute( vertices, 3 ) );
|
|
const uvAttribute = toNonIndexedAttribute( indices, new Float32BufferAttribute( uvs, 2 ) );
|
|
let colorAttribute;
|
|
let normalAttribute;
|
|
|
|
// color attribute
|
|
|
|
if ( color ) {
|
|
|
|
if ( colorPerVertex === false ) {
|
|
|
|
for ( let i = 0; i < xDimension - 1; i ++ ) {
|
|
|
|
for ( let j = 0; j < zDimension - 1; j ++ ) {
|
|
|
|
const index = i + j * ( xDimension - 1 );
|
|
|
|
const r = color[ index * 3 + 0 ];
|
|
const g = color[ index * 3 + 1 ];
|
|
const b = color[ index * 3 + 2 ];
|
|
|
|
// one color per quad
|
|
|
|
colors.push( r, g, b ); colors.push( r, g, b ); colors.push( r, g, b );
|
|
colors.push( r, g, b ); colors.push( r, g, b ); colors.push( r, g, b );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
colorAttribute = new Float32BufferAttribute( colors, 3 );
|
|
|
|
} else {
|
|
|
|
colorAttribute = toNonIndexedAttribute( indices, new Float32BufferAttribute( colors, 3 ) );
|
|
|
|
}
|
|
|
|
convertColorsToLinearSRGB( colorAttribute );
|
|
|
|
}
|
|
|
|
// normal attribute
|
|
|
|
if ( normal ) {
|
|
|
|
if ( normalPerVertex === false ) {
|
|
|
|
for ( let i = 0; i < xDimension - 1; i ++ ) {
|
|
|
|
for ( let j = 0; j < zDimension - 1; j ++ ) {
|
|
|
|
const index = i + j * ( xDimension - 1 );
|
|
|
|
const xn = normal[ index * 3 + 0 ];
|
|
const yn = normal[ index * 3 + 1 ];
|
|
const zn = normal[ index * 3 + 2 ];
|
|
|
|
// one normal per quad
|
|
|
|
normals.push( xn, yn, zn ); normals.push( xn, yn, zn ); normals.push( xn, yn, zn );
|
|
normals.push( xn, yn, zn ); normals.push( xn, yn, zn ); normals.push( xn, yn, zn );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
normalAttribute = new Float32BufferAttribute( normals, 3 );
|
|
|
|
} else {
|
|
|
|
normalAttribute = toNonIndexedAttribute( indices, new Float32BufferAttribute( normals, 3 ) );
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
normalAttribute = computeNormalAttribute( indices, vertices, creaseAngle );
|
|
|
|
}
|
|
|
|
// build geometry
|
|
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute( 'position', positionAttribute );
|
|
geometry.setAttribute( 'normal', normalAttribute );
|
|
geometry.setAttribute( 'uv', uvAttribute );
|
|
|
|
if ( colorAttribute ) geometry.setAttribute( 'color', colorAttribute );
|
|
|
|
// "solid" influences the material so let's store it for later use
|
|
|
|
geometry._solid = solid;
|
|
geometry._type = 'mesh';
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
function buildExtrusionNode( node ) {
|
|
|
|
let crossSection = [ 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1, 1 ];
|
|
let spine = [ 0, 0, 0, 0, 1, 0 ];
|
|
let scale;
|
|
let orientation;
|
|
|
|
let beginCap = true;
|
|
let ccw = true;
|
|
let creaseAngle = 0;
|
|
let endCap = true;
|
|
let solid = true;
|
|
|
|
const fields = node.fields;
|
|
|
|
for ( let i = 0, l = fields.length; i < l; i ++ ) {
|
|
|
|
const field = fields[ i ];
|
|
const fieldName = field.name;
|
|
const fieldValues = field.values;
|
|
|
|
switch ( fieldName ) {
|
|
|
|
case 'beginCap':
|
|
beginCap = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'ccw':
|
|
ccw = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'convex':
|
|
// field not supported
|
|
break;
|
|
|
|
case 'creaseAngle':
|
|
creaseAngle = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'crossSection':
|
|
crossSection = fieldValues;
|
|
break;
|
|
|
|
case 'endCap':
|
|
endCap = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'orientation':
|
|
orientation = fieldValues;
|
|
break;
|
|
|
|
case 'scale':
|
|
scale = fieldValues;
|
|
break;
|
|
|
|
case 'solid':
|
|
solid = fieldValues[ 0 ];
|
|
break;
|
|
|
|
case 'spine':
|
|
spine = fieldValues; // only extrusion along the Y-axis are supported so far
|
|
break;
|
|
|
|
default:
|
|
console.warn( 'THREE.VRMLLoader: Unknown field:', fieldName );
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const crossSectionClosed = ( crossSection[ 0 ] === crossSection[ crossSection.length - 2 ] && crossSection[ 1 ] === crossSection[ crossSection.length - 1 ] );
|
|
|
|
// vertices
|
|
|
|
const vertices = [];
|
|
const spineVector = new Vector3();
|
|
const scaling = new Vector3();
|
|
|
|
const axis = new Vector3();
|
|
const vertex = new Vector3();
|
|
const quaternion = new Quaternion();
|
|
|
|
for ( let i = 0, j = 0, o = 0, il = spine.length; i < il; i += 3, j += 2, o += 4 ) {
|
|
|
|
spineVector.fromArray( spine, i );
|
|
|
|
scaling.x = scale ? scale[ j + 0 ] : 1;
|
|
scaling.y = 1;
|
|
scaling.z = scale ? scale[ j + 1 ] : 1;
|
|
|
|
axis.x = orientation ? orientation[ o + 0 ] : 0;
|
|
axis.y = orientation ? orientation[ o + 1 ] : 0;
|
|
axis.z = orientation ? orientation[ o + 2 ] : 1;
|
|
const angle = orientation ? orientation[ o + 3 ] : 0;
|
|
|
|
for ( let k = 0, kl = crossSection.length; k < kl; k += 2 ) {
|
|
|
|
vertex.x = crossSection[ k + 0 ];
|
|
vertex.y = 0;
|
|
vertex.z = crossSection[ k + 1 ];
|
|
|
|
// scale
|
|
|
|
vertex.multiply( scaling );
|
|
|
|
// rotate
|
|
|
|
quaternion.setFromAxisAngle( axis, angle );
|
|
vertex.applyQuaternion( quaternion );
|
|
|
|
// translate
|
|
|
|
vertex.add( spineVector );
|
|
|
|
vertices.push( vertex.x, vertex.y, vertex.z );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// indices
|
|
|
|
const indices = [];
|
|
|
|
const spineCount = spine.length / 3;
|
|
const crossSectionCount = crossSection.length / 2;
|
|
|
|
for ( let i = 0; i < spineCount - 1; i ++ ) {
|
|
|
|
for ( let j = 0; j < crossSectionCount - 1; j ++ ) {
|
|
|
|
const a = j + i * crossSectionCount;
|
|
let b = ( j + 1 ) + i * crossSectionCount;
|
|
const c = j + ( i + 1 ) * crossSectionCount;
|
|
let d = ( j + 1 ) + ( i + 1 ) * crossSectionCount;
|
|
|
|
if ( ( j === crossSectionCount - 2 ) && ( crossSectionClosed === true ) ) {
|
|
|
|
b = i * crossSectionCount;
|
|
d = ( i + 1 ) * crossSectionCount;
|
|
|
|
}
|
|
|
|
if ( ccw === true ) {
|
|
|
|
indices.push( a, b, c );
|
|
indices.push( c, b, d );
|
|
|
|
} else {
|
|
|
|
indices.push( a, c, b );
|
|
indices.push( c, d, b );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// triangulate cap
|
|
|
|
if ( beginCap === true || endCap === true ) {
|
|
|
|
const contour = [];
|
|
|
|
for ( let i = 0, l = crossSection.length; i < l; i += 2 ) {
|
|
|
|
contour.push( new Vector2( crossSection[ i ], crossSection[ i + 1 ] ) );
|
|
|
|
}
|
|
|
|
const faces = ShapeUtils.triangulateShape( contour, [] );
|
|
const capIndices = [];
|
|
|
|
for ( let i = 0, l = faces.length; i < l; i ++ ) {
|
|
|
|
const face = faces[ i ];
|
|
|
|
capIndices.push( face[ 0 ], face[ 1 ], face[ 2 ] );
|
|
|
|
}
|
|
|
|
// begin cap
|
|
|
|
if ( beginCap === true ) {
|
|
|
|
for ( let i = 0, l = capIndices.length; i < l; i += 3 ) {
|
|
|
|
if ( ccw === true ) {
|
|
|
|
indices.push( capIndices[ i + 0 ], capIndices[ i + 1 ], capIndices[ i + 2 ] );
|
|
|
|
} else {
|
|
|
|
indices.push( capIndices[ i + 0 ], capIndices[ i + 2 ], capIndices[ i + 1 ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// end cap
|
|
|
|
if ( endCap === true ) {
|
|
|
|
const indexOffset = crossSectionCount * ( spineCount - 1 ); // references to the first vertex of the last cross section
|
|
|
|
for ( let i = 0, l = capIndices.length; i < l; i += 3 ) {
|
|
|
|
if ( ccw === true ) {
|
|
|
|
indices.push( indexOffset + capIndices[ i + 0 ], indexOffset + capIndices[ i + 2 ], indexOffset + capIndices[ i + 1 ] );
|
|
|
|
} else {
|
|
|
|
indices.push( indexOffset + capIndices[ i + 0 ], indexOffset + capIndices[ i + 1 ], indexOffset + capIndices[ i + 2 ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const positionAttribute = toNonIndexedAttribute( indices, new Float32BufferAttribute( vertices, 3 ) );
|
|
const normalAttribute = computeNormalAttribute( indices, vertices, creaseAngle );
|
|
|
|
const geometry = new BufferGeometry();
|
|
geometry.setAttribute( 'position', positionAttribute );
|
|
geometry.setAttribute( 'normal', normalAttribute );
|
|
// no uvs yet
|
|
|
|
// "solid" influences the material so let's store it for later use
|
|
|
|
geometry._solid = solid;
|
|
geometry._type = 'mesh';
|
|
|
|
return geometry;
|
|
|
|
}
|
|
|
|
// helper functions
|
|
|
|
function resolveUSE( identifier ) {
|
|
|
|
const node = nodeMap[ identifier ];
|
|
const build = getNode( node );
|
|
|
|
// because the same 3D objects can have different transformations, it's necessary to clone them.
|
|
// materials can be influenced by the geometry (e.g. vertex normals). cloning is necessary to avoid
|
|
// any side effects
|
|
|
|
return ( build.isObject3D || build.isMaterial ) ? build.clone() : build;
|
|
|
|
}
|
|
|
|
function parseFieldChildren( children, owner ) {
|
|
|
|
for ( let i = 0, l = children.length; i < l; i ++ ) {
|
|
|
|
const object = getNode( children[ i ] );
|
|
|
|
if ( object instanceof Object3D ) owner.add( object );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
function triangulateFaceIndex( index, ccw ) {
|
|
|
|
const indices = [];
|
|
|
|
// since face defintions can have more than three vertices, it's necessary to
|
|
// perform a simple triangulation
|
|
|
|
let start = 0;
|
|
|
|
for ( let i = 0, l = index.length; i < l; i ++ ) {
|
|
|
|
const i1 = index[ start ];
|
|
const i2 = index[ i + ( ccw ? 1 : 2 ) ];
|
|
const i3 = index[ i + ( ccw ? 2 : 1 ) ];
|
|
|
|
indices.push( i1, i2, i3 );
|
|
|
|
// an index of -1 indicates that the current face has ended and the next one begins
|
|
|
|
if ( index[ i + 3 ] === - 1 || i + 3 >= l ) {
|
|
|
|
i += 3;
|
|
start = i + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return indices;
|
|
|
|
}
|
|
|
|
function triangulateFaceData( data, index ) {
|
|
|
|
const triangulatedData = [];
|
|
|
|
let start = 0;
|
|
|
|
for ( let i = 0, l = index.length; i < l; i ++ ) {
|
|
|
|
const stride = start * 3;
|
|
|
|
const x = data[ stride ];
|
|
const y = data[ stride + 1 ];
|
|
const z = data[ stride + 2 ];
|
|
|
|
triangulatedData.push( x, y, z );
|
|
|
|
// an index of -1 indicates that the current face has ended and the next one begins
|
|
|
|
if ( index[ i + 3 ] === - 1 || i + 3 >= l ) {
|
|
|
|
i += 3;
|
|
start ++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return triangulatedData;
|
|
|
|
}
|
|
|
|
function flattenData( data, index ) {
|
|
|
|
const flattenData = [];
|
|
|
|
for ( let i = 0, l = index.length; i < l; i ++ ) {
|
|
|
|
const i1 = index[ i ];
|
|
|
|
const stride = i1 * 3;
|
|
|
|
const x = data[ stride ];
|
|
const y = data[ stride + 1 ];
|
|
const z = data[ stride + 2 ];
|
|
|
|
flattenData.push( x, y, z );
|
|
|
|
}
|
|
|
|
return flattenData;
|
|
|
|
}
|
|
|
|
function expandLineIndex( index ) {
|
|
|
|
const indices = [];
|
|
|
|
for ( let i = 0, l = index.length; i < l; i ++ ) {
|
|
|
|
const i1 = index[ i ];
|
|
const i2 = index[ i + 1 ];
|
|
|
|
indices.push( i1, i2 );
|
|
|
|
// an index of -1 indicates that the current line has ended and the next one begins
|
|
|
|
if ( index[ i + 2 ] === - 1 || i + 2 >= l ) {
|
|
|
|
i += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return indices;
|
|
|
|
}
|
|
|
|
function expandLineData( data, index ) {
|
|
|
|
const triangulatedData = [];
|
|
|
|
let start = 0;
|
|
|
|
for ( let i = 0, l = index.length; i < l; i ++ ) {
|
|
|
|
const stride = start * 3;
|
|
|
|
const x = data[ stride ];
|
|
const y = data[ stride + 1 ];
|
|
const z = data[ stride + 2 ];
|
|
|
|
triangulatedData.push( x, y, z );
|
|
|
|
// an index of -1 indicates that the current line has ended and the next one begins
|
|
|
|
if ( index[ i + 2 ] === - 1 || i + 2 >= l ) {
|
|
|
|
i += 2;
|
|
start ++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return triangulatedData;
|
|
|
|
}
|
|
|
|
const vA = new Vector3();
|
|
const vB = new Vector3();
|
|
const vC = new Vector3();
|
|
|
|
const uvA = new Vector2();
|
|
const uvB = new Vector2();
|
|
const uvC = new Vector2();
|
|
|
|
function computeAttributeFromIndexedData( coordIndex, index, data, itemSize ) {
|
|
|
|
const array = [];
|
|
|
|
// we use the coordIndex.length as delimiter since normalIndex must contain at least as many indices
|
|
|
|
for ( let i = 0, l = coordIndex.length; i < l; i += 3 ) {
|
|
|
|
const a = index[ i ];
|
|
const b = index[ i + 1 ];
|
|
const c = index[ i + 2 ];
|
|
|
|
if ( itemSize === 2 ) {
|
|
|
|
uvA.fromArray( data, a * itemSize );
|
|
uvB.fromArray( data, b * itemSize );
|
|
uvC.fromArray( data, c * itemSize );
|
|
|
|
array.push( uvA.x, uvA.y );
|
|
array.push( uvB.x, uvB.y );
|
|
array.push( uvC.x, uvC.y );
|
|
|
|
} else {
|
|
|
|
vA.fromArray( data, a * itemSize );
|
|
vB.fromArray( data, b * itemSize );
|
|
vC.fromArray( data, c * itemSize );
|
|
|
|
array.push( vA.x, vA.y, vA.z );
|
|
array.push( vB.x, vB.y, vB.z );
|
|
array.push( vC.x, vC.y, vC.z );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new Float32BufferAttribute( array, itemSize );
|
|
|
|
}
|
|
|
|
function computeAttributeFromFaceData( index, faceData ) {
|
|
|
|
const array = [];
|
|
|
|
for ( let i = 0, j = 0, l = index.length; i < l; i += 3, j ++ ) {
|
|
|
|
vA.fromArray( faceData, j * 3 );
|
|
|
|
array.push( vA.x, vA.y, vA.z );
|
|
array.push( vA.x, vA.y, vA.z );
|
|
array.push( vA.x, vA.y, vA.z );
|
|
|
|
}
|
|
|
|
return new Float32BufferAttribute( array, 3 );
|
|
|
|
}
|
|
|
|
function computeAttributeFromLineData( index, lineData ) {
|
|
|
|
const array = [];
|
|
|
|
for ( let i = 0, j = 0, l = index.length; i < l; i += 2, j ++ ) {
|
|
|
|
vA.fromArray( lineData, j * 3 );
|
|
|
|
array.push( vA.x, vA.y, vA.z );
|
|
array.push( vA.x, vA.y, vA.z );
|
|
|
|
}
|
|
|
|
return new Float32BufferAttribute( array, 3 );
|
|
|
|
}
|
|
|
|
function toNonIndexedAttribute( indices, attribute ) {
|
|
|
|
const array = attribute.array;
|
|
const itemSize = attribute.itemSize;
|
|
|
|
const array2 = new array.constructor( indices.length * itemSize );
|
|
|
|
let index = 0, index2 = 0;
|
|
|
|
for ( let i = 0, l = indices.length; i < l; i ++ ) {
|
|
|
|
index = indices[ i ] * itemSize;
|
|
|
|
for ( let j = 0; j < itemSize; j ++ ) {
|
|
|
|
array2[ index2 ++ ] = array[ index ++ ];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return new Float32BufferAttribute( array2, itemSize );
|
|
|
|
}
|
|
|
|
const ab = new Vector3();
|
|
const cb = new Vector3();
|
|
|
|
function computeNormalAttribute( index, coord, creaseAngle ) {
|
|
|
|
const faces = [];
|
|
const vertexNormals = {};
|
|
|
|
// prepare face and raw vertex normals
|
|
|
|
for ( let i = 0, l = index.length; i < l; i += 3 ) {
|
|
|
|
const a = index[ i ];
|
|
const b = index[ i + 1 ];
|
|
const c = index[ i + 2 ];
|
|
|
|
const face = new Face( a, b, c );
|
|
|
|
vA.fromArray( coord, a * 3 );
|
|
vB.fromArray( coord, b * 3 );
|
|
vC.fromArray( coord, c * 3 );
|
|
|
|
cb.subVectors( vC, vB );
|
|
ab.subVectors( vA, vB );
|
|
cb.cross( ab );
|
|
|
|
cb.normalize();
|
|
|
|
face.normal.copy( cb );
|
|
|
|
if ( vertexNormals[ a ] === undefined ) vertexNormals[ a ] = [];
|
|
if ( vertexNormals[ b ] === undefined ) vertexNormals[ b ] = [];
|
|
if ( vertexNormals[ c ] === undefined ) vertexNormals[ c ] = [];
|
|
|
|
vertexNormals[ a ].push( face.normal );
|
|
vertexNormals[ b ].push( face.normal );
|
|
vertexNormals[ c ].push( face.normal );
|
|
|
|
faces.push( face );
|
|
|
|
}
|
|
|
|
// compute vertex normals and build final geometry
|
|
|
|
const normals = [];
|
|
|
|
for ( let i = 0, l = faces.length; i < l; i ++ ) {
|
|
|
|
const face = faces[ i ];
|
|
|
|
const nA = weightedNormal( vertexNormals[ face.a ], face.normal, creaseAngle );
|
|
const nB = weightedNormal( vertexNormals[ face.b ], face.normal, creaseAngle );
|
|
const nC = weightedNormal( vertexNormals[ face.c ], face.normal, creaseAngle );
|
|
|
|
vA.fromArray( coord, face.a * 3 );
|
|
vB.fromArray( coord, face.b * 3 );
|
|
vC.fromArray( coord, face.c * 3 );
|
|
|
|
normals.push( nA.x, nA.y, nA.z );
|
|
normals.push( nB.x, nB.y, nB.z );
|
|
normals.push( nC.x, nC.y, nC.z );
|
|
|
|
}
|
|
|
|
return new Float32BufferAttribute( normals, 3 );
|
|
|
|
}
|
|
|
|
function weightedNormal( normals, vector, creaseAngle ) {
|
|
|
|
const normal = new Vector3();
|
|
|
|
if ( creaseAngle === 0 ) {
|
|
|
|
normal.copy( vector );
|
|
|
|
} else {
|
|
|
|
for ( let i = 0, l = normals.length; i < l; i ++ ) {
|
|
|
|
if ( normals[ i ].angleTo( vector ) < creaseAngle ) {
|
|
|
|
normal.add( normals[ i ] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return normal.normalize();
|
|
|
|
}
|
|
|
|
function toColorArray( colors ) {
|
|
|
|
const array = [];
|
|
|
|
for ( let i = 0, l = colors.length; i < l; i += 3 ) {
|
|
|
|
array.push( new Color( colors[ i ], colors[ i + 1 ], colors[ i + 2 ] ) );
|
|
|
|
}
|
|
|
|
return array;
|
|
|
|
}
|
|
|
|
function convertColorsToLinearSRGB( attribute ) {
|
|
|
|
const color = new Color();
|
|
|
|
for ( let i = 0; i < attribute.count; i ++ ) {
|
|
|
|
color.fromBufferAttribute( attribute, i );
|
|
color.convertSRGBToLinear();
|
|
|
|
attribute.setXYZ( i, color.r, color.g, color.b );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Vertically paints the faces interpolating between the
|
|
* specified colors at the specified angels. This is used for the Background
|
|
* node, but could be applied to other nodes with multiple faces as well.
|
|
*
|
|
* When used with the Background node, default is directionIsDown is true if
|
|
* interpolating the skyColor down from the Zenith. When interpolationg up from
|
|
* the Nadir i.e. interpolating the groundColor, the directionIsDown is false.
|
|
*
|
|
* The first angle is never specified, it is the Zenith (0 rad). Angles are specified
|
|
* in radians. The geometry is thought a sphere, but could be anything. The color interpolation
|
|
* is linear along the Y axis in any case.
|
|
*
|
|
* You must specify one more color than you have angles at the beginning of the colors array.
|
|
* This is the color of the Zenith (the top of the shape).
|
|
*
|
|
* @param {BufferGeometry} geometry
|
|
* @param {number} radius
|
|
* @param {array} angles
|
|
* @param {array} colors
|
|
* @param {boolean} topDown - Whether to work top down or bottom up.
|
|
*/
|
|
function paintFaces( geometry, radius, angles, colors, topDown ) {
|
|
|
|
// compute threshold values
|
|
|
|
const thresholds = [];
|
|
const startAngle = ( topDown === true ) ? 0 : Math.PI;
|
|
|
|
for ( let i = 0, l = colors.length; i < l; i ++ ) {
|
|
|
|
let angle = ( i === 0 ) ? 0 : angles[ i - 1 ];
|
|
angle = ( topDown === true ) ? angle : ( startAngle - angle );
|
|
|
|
const point = new Vector3();
|
|
point.setFromSphericalCoords( radius, angle, 0 );
|
|
|
|
thresholds.push( point );
|
|
|
|
}
|
|
|
|
// generate vertex colors
|
|
|
|
const indices = geometry.index;
|
|
const positionAttribute = geometry.attributes.position;
|
|
const colorAttribute = new BufferAttribute( new Float32Array( geometry.attributes.position.count * 3 ), 3 );
|
|
|
|
const position = new Vector3();
|
|
const color = new Color();
|
|
|
|
for ( let i = 0; i < indices.count; i ++ ) {
|
|
|
|
const index = indices.getX( i );
|
|
position.fromBufferAttribute( positionAttribute, index );
|
|
|
|
let thresholdIndexA, thresholdIndexB;
|
|
let t = 1;
|
|
|
|
for ( let j = 1; j < thresholds.length; j ++ ) {
|
|
|
|
thresholdIndexA = j - 1;
|
|
thresholdIndexB = j;
|
|
|
|
const thresholdA = thresholds[ thresholdIndexA ];
|
|
const thresholdB = thresholds[ thresholdIndexB ];
|
|
|
|
if ( topDown === true ) {
|
|
|
|
// interpolation for sky color
|
|
|
|
if ( position.y <= thresholdA.y && position.y > thresholdB.y ) {
|
|
|
|
t = Math.abs( thresholdA.y - position.y ) / Math.abs( thresholdA.y - thresholdB.y );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// interpolation for ground color
|
|
|
|
if ( position.y >= thresholdA.y && position.y < thresholdB.y ) {
|
|
|
|
t = Math.abs( thresholdA.y - position.y ) / Math.abs( thresholdA.y - thresholdB.y );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const colorA = colors[ thresholdIndexA ];
|
|
const colorB = colors[ thresholdIndexB ];
|
|
|
|
color.copy( colorA ).lerp( colorB, t ).convertSRGBToLinear();
|
|
|
|
colorAttribute.setXYZ( index, color.r, color.g, color.b );
|
|
|
|
}
|
|
|
|
geometry.setAttribute( 'color', colorAttribute );
|
|
|
|
}
|
|
|
|
//
|
|
|
|
const textureLoader = new TextureLoader( this.manager );
|
|
textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
|
|
|
|
// check version (only 2.0 is supported)
|
|
|
|
if ( data.indexOf( '#VRML V2.0' ) === - 1 ) {
|
|
|
|
throw Error( 'THREE.VRMLLexer: Version of VRML asset not supported.' );
|
|
|
|
}
|
|
|
|
// create JSON representing the tree structure of the VRML asset
|
|
|
|
const tree = generateVRMLTree( data );
|
|
|
|
// parse the tree structure to a three.js scene
|
|
|
|
const scene = parseTree( tree );
|
|
|
|
return scene;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
class VRMLLexer {
|
|
|
|
constructor( tokens ) {
|
|
|
|
this.lexer = new chevrotain.Lexer( tokens );
|
|
|
|
}
|
|
|
|
lex( inputText ) {
|
|
|
|
const lexingResult = this.lexer.tokenize( inputText );
|
|
|
|
if ( lexingResult.errors.length > 0 ) {
|
|
|
|
console.error( lexingResult.errors );
|
|
|
|
throw Error( 'THREE.VRMLLexer: Lexing errors detected.' );
|
|
|
|
}
|
|
|
|
return lexingResult;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const CstParser = chevrotain.CstParser;
|
|
|
|
class VRMLParser extends CstParser {
|
|
|
|
constructor( tokenVocabulary ) {
|
|
|
|
super( tokenVocabulary );
|
|
|
|
const $ = this;
|
|
|
|
const Version = tokenVocabulary[ 'Version' ];
|
|
const LCurly = tokenVocabulary[ 'LCurly' ];
|
|
const RCurly = tokenVocabulary[ 'RCurly' ];
|
|
const LSquare = tokenVocabulary[ 'LSquare' ];
|
|
const RSquare = tokenVocabulary[ 'RSquare' ];
|
|
const Identifier = tokenVocabulary[ 'Identifier' ];
|
|
const RouteIdentifier = tokenVocabulary[ 'RouteIdentifier' ];
|
|
const StringLiteral = tokenVocabulary[ 'StringLiteral' ];
|
|
const HexLiteral = tokenVocabulary[ 'HexLiteral' ];
|
|
const NumberLiteral = tokenVocabulary[ 'NumberLiteral' ];
|
|
const TrueLiteral = tokenVocabulary[ 'TrueLiteral' ];
|
|
const FalseLiteral = tokenVocabulary[ 'FalseLiteral' ];
|
|
const NullLiteral = tokenVocabulary[ 'NullLiteral' ];
|
|
const DEF = tokenVocabulary[ 'DEF' ];
|
|
const USE = tokenVocabulary[ 'USE' ];
|
|
const ROUTE = tokenVocabulary[ 'ROUTE' ];
|
|
const TO = tokenVocabulary[ 'TO' ];
|
|
const NodeName = tokenVocabulary[ 'NodeName' ];
|
|
|
|
$.RULE( 'vrml', function () {
|
|
|
|
$.SUBRULE( $.version );
|
|
$.AT_LEAST_ONE( function () {
|
|
|
|
$.SUBRULE( $.node );
|
|
|
|
} );
|
|
$.MANY( function () {
|
|
|
|
$.SUBRULE( $.route );
|
|
|
|
} );
|
|
|
|
} );
|
|
|
|
$.RULE( 'version', function () {
|
|
|
|
$.CONSUME( Version );
|
|
|
|
} );
|
|
|
|
$.RULE( 'node', function () {
|
|
|
|
$.OPTION( function () {
|
|
|
|
$.SUBRULE( $.def );
|
|
|
|
} );
|
|
|
|
$.CONSUME( NodeName );
|
|
$.CONSUME( LCurly );
|
|
$.MANY( function () {
|
|
|
|
$.SUBRULE( $.field );
|
|
|
|
} );
|
|
$.CONSUME( RCurly );
|
|
|
|
} );
|
|
|
|
$.RULE( 'field', function () {
|
|
|
|
$.CONSUME( Identifier );
|
|
|
|
$.OR2( [
|
|
{ ALT: function () {
|
|
|
|
$.SUBRULE( $.singleFieldValue );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.SUBRULE( $.multiFieldValue );
|
|
|
|
} }
|
|
] );
|
|
|
|
} );
|
|
|
|
$.RULE( 'def', function () {
|
|
|
|
$.CONSUME( DEF );
|
|
$.OR( [
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( Identifier );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( NodeName );
|
|
|
|
} }
|
|
] );
|
|
|
|
} );
|
|
|
|
$.RULE( 'use', function () {
|
|
|
|
$.CONSUME( USE );
|
|
$.OR( [
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( Identifier );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( NodeName );
|
|
|
|
} }
|
|
] );
|
|
|
|
} );
|
|
|
|
$.RULE( 'singleFieldValue', function () {
|
|
|
|
$.AT_LEAST_ONE( function () {
|
|
|
|
$.OR( [
|
|
{ ALT: function () {
|
|
|
|
$.SUBRULE( $.node );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.SUBRULE( $.use );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( StringLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( HexLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( NumberLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( TrueLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( FalseLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( NullLiteral );
|
|
|
|
} }
|
|
] );
|
|
|
|
|
|
} );
|
|
|
|
} );
|
|
|
|
$.RULE( 'multiFieldValue', function () {
|
|
|
|
$.CONSUME( LSquare );
|
|
$.MANY( function () {
|
|
|
|
$.OR( [
|
|
{ ALT: function () {
|
|
|
|
$.SUBRULE( $.node );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.SUBRULE( $.use );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( StringLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( HexLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( NumberLiteral );
|
|
|
|
} },
|
|
{ ALT: function () {
|
|
|
|
$.CONSUME( NullLiteral );
|
|
|
|
} }
|
|
] );
|
|
|
|
} );
|
|
$.CONSUME( RSquare );
|
|
|
|
} );
|
|
|
|
$.RULE( 'route', function () {
|
|
|
|
$.CONSUME( ROUTE );
|
|
$.CONSUME( RouteIdentifier );
|
|
$.CONSUME( TO );
|
|
$.CONSUME2( RouteIdentifier );
|
|
|
|
} );
|
|
|
|
this.performSelfAnalysis();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
class Face {
|
|
|
|
constructor( a, b, c ) {
|
|
|
|
this.a = a;
|
|
this.b = b;
|
|
this.c = c;
|
|
this.normal = new Vector3();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const TEXTURE_TYPE = {
|
|
INTENSITY: 1,
|
|
INTENSITY_ALPHA: 2,
|
|
RGB: 3,
|
|
RGBA: 4
|
|
};
|
|
|
|
export { VRMLLoader };
|